Menger curves in Peano continua
Krupski, P. ; Patkowska, H.
Colloquium Mathematicae, Tome 70 (1996), p. 79-86 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:210398
@article{bwmeta1.element.bwnjournal-article-cmv70i1p79bwm,
     author = {P. Krupski and H. Patkowska},
     title = {Menger curves in Peano continua},
     journal = {Colloquium Mathematicae},
     volume = {70},
     year = {1996},
     pages = {79-86},
     zbl = {0919.54024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv70i1p79bwm}
}
Krupski, P.; Patkowska, H. Menger curves in Peano continua. Colloquium Mathematicae, Tome 70 (1996) pp. 79-86. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv70i1p79bwm/

[000] [1] R. D. Anderson, A characterization of the universal curve and a proof of its homogeneity, Ann. of Math. 67 (1958), 33-324. | Zbl 0083.17607

[001] [2] R. D. Anderson, One-dimensional continuous curves and a homogeneity theorem, ibid. 68 (1958), 1-16. | Zbl 0083.17608

[002] [3] M. Bestvina, Characterizing k-dimensional universal Menger compacta, Mem. Amer. Math. Soc. 380 (1988). | Zbl 0645.54029

[003] [4] A. Chigogidze, K. Kawamura and E. D. Tymchatyn, Menger manifolds, in: Continua with the Houston Problem Book, H. Cook, W. T. Ingram, K. T. Kuperberg, A. Lelek and P. Minc (eds.), Marcel Dekker, 1995, 37-88. | Zbl 0871.57019

[004] [5] P. Krupski, Recent results on homogeneous curves and ANR's, Topology Proc. 16 (1991), 109-118. | Zbl 0801.54015

[005] [6] P. Krupski, The disjoint arcs property for homogeneous curves, Fund. Math. 146 (1995), 159-169. | Zbl 0831.54031

[006] [7] K. Kuratowski, Topology II, Academic Press, New York, and PWN-Polish Sci. Publ., Warszawa, 1968.

[007] [8] J. C. Mayer, L. G. Oversteegen and E. D. Tymchatyn, The Menger curve. Characterization and extension of homeomorphisms of non-locally-separating closed subsets, Dissertationes Math. (Rozprawy Mat.) 252 (1986). | Zbl 0649.54020

[008] [9] G. T. Whyburn, Analytic Topology, Amer. Math. Soc. Colloq. Publ. 28, Providence, R.I., 1942.