Cyclic approximation of analytic cocycles over irrational rotations
Iwanik, A.
Colloquium Mathematicae, Tome 70 (1996), p. 73-78 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:210397
@article{bwmeta1.element.bwnjournal-article-cmv70i1p73bwm,
     author = {A. Iwanik},
     title = {Cyclic approximation of analytic cocycles over irrational rotations},
     journal = {Colloquium Mathematicae},
     volume = {70},
     year = {1996},
     pages = {73-78},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv70i1p73bwm}
}
Iwanik, A. Cyclic approximation of analytic cocycles over irrational rotations. Colloquium Mathematicae, Tome 70 (1996) pp. 73-78. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv70i1p73bwm/

[00000] [A] H. Anzai, Ergodic skew product transformations on the torus, Osaka Math. J. 3 (1951), 83-99.

[00001] [BL] F. Blanchard and M. Lemańczyk, Measure-preserving diffeomorphisms with an arbitrary spectral multiplicity, Topol. Methods Nonlinear Anal. 1 (1993), 275-294.

[00002] [CFS] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, 1982.

[00003] [I] A. Iwanik, Generic smooth cocycles of degree zero over irrational rotations, Studia Math., to appear.

[00004] [IS] A. Iwanik and J. Serafin, Most monothetic extensions are rank-1, Colloq. Math. 66 (1993), 63-76.

[00005] [K] A. Katok, Constructions in ergodic theory, unpublished lecture notes.

[00006] [KLR] J. Kwiatkowski, M. Lemańczyk and D. Rudolph, A class of cocycles having an analytic coboundary modification, Israel J. Math. 87 (1994), 337-360.

[00007] [R] A. Robinson, Non-abelian extensions have nonsimple spectrum, Composito Math. 65 (1988), 155-170.