@article{bwmeta1.element.bwnjournal-article-cmv70i1p73bwm, author = {A. Iwanik}, title = {Cyclic approximation of analytic cocycles over irrational rotations}, journal = {Colloquium Mathematicae}, volume = {70}, year = {1996}, pages = {73-78}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv70i1p73bwm} }
Iwanik, A. Cyclic approximation of analytic cocycles over irrational rotations. Colloquium Mathematicae, Tome 70 (1996) pp. 73-78. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv70i1p73bwm/
[00000] [A] H. Anzai, Ergodic skew product transformations on the torus, Osaka Math. J. 3 (1951), 83-99.
[00001] [BL] F. Blanchard and M. Lemańczyk, Measure-preserving diffeomorphisms with an arbitrary spectral multiplicity, Topol. Methods Nonlinear Anal. 1 (1993), 275-294.
[00002] [CFS] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, 1982.
[00003] [I] A. Iwanik, Generic smooth cocycles of degree zero over irrational rotations, Studia Math., to appear.
[00004] [IS] A. Iwanik and J. Serafin, Most monothetic extensions are rank-, Colloq. Math. 66 (1993), 63-76.
[00005] [K] A. Katok, Constructions in ergodic theory, unpublished lecture notes.
[00006] [KLR] J. Kwiatkowski, M. Lemańczyk and D. Rudolph, A class of cocycles having an analytic coboundary modification, Israel J. Math. 87 (1994), 337-360.
[00007] [R] A. Robinson, Non-abelian extensions have nonsimple spectrum, Composito Math. 65 (1988), 155-170.