@article{bwmeta1.element.bwnjournal-article-cmv70i1p41bwm, author = {Mourad Benabas}, title = {\'Etude d'un syst\`eme diff\'erentiel non lin\'eaire r\'egissant un ph\'enom\`ene gyroscopique forc\'e}, journal = {Colloquium Mathematicae}, volume = {70}, year = {1996}, pages = {41-58}, zbl = {0997.34031}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv70i1p41bwm} }
Benabas, Mourad. Étude d'un système différentiel non linéaire régissant un phénomène gyroscopique forcé. Colloquium Mathematicae, Tome 70 (1996) pp. 41-58. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv70i1p41bwm/
[000] [1] A. Ambrosetti and V. Coti Zelati, Solutions with minimal period for Hamiltonian systems in potential well, ISAS, 1985. | Zbl 0623.58013
[001] [2] A. Assem, Thèse de docteur en science, Paris-Dauphine, 1987.
[002] [3] J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984. | Zbl 0641.47066
[003] [4] A. Bahri and P. L. Lions, Solutions of superlinear elliptic equations and their Morse indices, Ceremade, no. 9003. | Zbl 0818.35028
[004] [5] M. Benabas, Thèse de magister, U.S.T.H.B.-Alger, 1992.
[005] [6] I. Ekeland, Une théorie de Morse pour les systèmes Hamiltoniens convexes, Ann. Inst. H. Poincaré 1 (1984), 19-78. | Zbl 0537.58018
[006] [7] I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer, 1989. | Zbl 0707.70003
[007] [8] I. Ekeland and H. Hofer, Periodic solutions with prescribed minimal period for convex autonomous Hamiltonian systems, Invent. Math. 81 (1985), 155-188. | Zbl 0594.58035
[008] [9] I. Ekeland and H. Hofer, Subharmonics for convex nonautonomous Hamiltonian systems, Comm. Pure Appl. Math. 40 (1987), 1-36. | Zbl 0601.58035
[009] [10] I. Ekeland et R. Temam, Analyse convexe et problèmes variationnels, Dunod et Gauthier-Villars, 1972.
[010] [11] H. Hofer, A geometric description of the neighbourhood of a critical point given by the mountain-pass theorem, J. London Math. Soc. 31 (1985), 556-570. | Zbl 0573.58007
[011] [12] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, 1989.