On the complexity of H sets of the unit circle
Matheron, Etienne
Colloquium Mathematicae, Tome 70 (1996), p. 1-5 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:210393
@article{bwmeta1.element.bwnjournal-article-cmv70i1p1bwm,
     author = {Etienne Matheron},
     title = {On the complexity of H sets of the unit circle},
     journal = {Colloquium Mathematicae},
     volume = {70},
     year = {1996},
     pages = {1-5},
     zbl = {0843.43005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv70i1p1bwm}
}
Matheron, Etienne. On the complexity of H sets of the unit circle. Colloquium Mathematicae, Tome 70 (1996) pp. 1-5. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv70i1p1bwm/

[000] [1] N. Bary, A Treatise on Trigonometric Series, MacMillan, New York, 1964. | Zbl 0129.28002

[001] [2] N. Bary, Sur l'unicité du développement trigonométrique, Fund. Math. 9 (1927), 62-115. | Zbl 53.0261.01

[002] [3] G. Debs et J. Saint Raymond, Ensembles d'unicité et d'unicité au sens large, Ann. Inst. Fourier (Grenoble) 37 (3) (1987), 217-239. | Zbl 0618.42004

[003] [4] J. P. Kahane et R. Salem, Ensembles parfaits et séries trigonométriques, Hermann, Paris, 1963. | Zbl 0112.29304

[004] [5] R. Kaufman, A functional method for linear sets, Israel J. Math. 5 (1967), 185-187. | Zbl 0156.37403

[005] [6] R. Kaufman, Absolutely convergent Fourier series and some classes of sets, Bull. Sci. Math. 109 (1985), 363-372. | Zbl 0608.42007

[006] [7] A. Kechris and A. Louveau, Descriptive Set Theory and the Structure of Sets of Uniqueness, London Math. Soc. Lecture Note Ser. 128, Cambridge Univ. Press, 1987.

[007] [8] T. Linton, The H-sets in the unit circle are properly Gδσ, Real Anal. Exchange, to appear.

[008] [9] N. Lusin, Les ensembles analytiques, Chelsea, New York, 1972.

[009] [10] R. Lyons, A new type of sets of uniqueness, Duke Math. J. 57 (1988), 431-458. | Zbl 0677.42006