@article{bwmeta1.element.bwnjournal-article-cmv70i1p13bwm, author = {Yoshihiro Kubokawa}, title = {Coverable Radon measures in topological spaces with covering properties}, journal = {Colloquium Mathematicae}, volume = {70}, year = {1996}, pages = {13-23}, zbl = {0839.28007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv70i1p13bwm} }
Kubokawa, Yoshihiro. Coverable Radon measures in topological spaces with covering properties. Colloquium Mathematicae, Tome 70 (1996) pp. 13-23. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv70i1p13bwm/
[000] [ArPo] A. V. Arkhangel'skiĭ and V. I. Ponomarev, Fundamentals of General Topology, D. Reidel, Boston, 1983.
[001] [Bu] D. K. Burke, Covering properties, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, Amsterdam, 1984, 347-422.
[002] [En] R. Engelking, General Topology, PWN, Warszawa, 1977.
[003] [Fr] D. H. Fremlin, Topological Riesz Spaces and Measure Theory, Cambridge Univ. Press, London, 1974. | Zbl 0273.46035
[004] [GaPf1] R. J. Gardner and W. F. Pfeffer, Some undecidability results concerning Radon measures, Trans. Amer. Math. Soc. 259 (1980), 65-74. | Zbl 0455.28005
[005] [GaPf2] R. J. Gardner and W. F. Pfeffer, Relation between the regularity and σ-finiteness of Radon measures, Russian Math. Surveys 35 (3) (1980), 35-40. | Zbl 0485.28008
[006] [GaPf3] R. J. Gardner and W. F. Pfeffer, Decomposability of Radon measures, Trans. Amer. Math. Soc. 283 (1984), 283-293. | Zbl 0543.28006
[007] [GaPf4] R. J. Gardner and W. F. Pfeffer, Borel measures, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, Amsterdam, 1984, 961-1043.
[008] [Gr1] G. Gruenhage, Generalized metric spaces, ibid., 423-501.
[009] [Gr2] G. Gruenhage, Generalized metric spaces and metrization, in: Recent Progress in General Topology, M. Hušek and J. van Mill (eds.), North-Holland, Amsterdam, 1992, 239-274.
[010] [GrPf] G. Gruenhage and W. F. Pfeffer, When inner regularity of Borel measures implies regularity, J. London Math. Soc. (2) 17 (1978), 165-171. | Zbl 0387.28014
[011] [Ha] P. R. Halmos, Measure Theory, Springer, New York, 1974.
[012] [Ku1] Y. Kubokawa, Coverable standard measures with the chain condition and the Lebesgue decomposition, Czechoslovak Math. J. 45 (1995), 315-324. | Zbl 0841.28003
[013] [Ku2] Y. Kubokawa, Localizable non-measurable measures and the Radon-Nikodym theorem, in preparation.
[014] [LuMu] H. Luschgy and D. Mussmann, Equivalent properties and completion of statistical experiments, Sankhyā Ser. A 47 (1985), 174-195. | Zbl 0593.62003
[015] [Ma] Encyclopedic Dictionary of Mathematics, edited by Math. Soc. Japan, 293F: Dominated statistical structure, Iwanami-shoten, Tokyo, 1985, 873-874 (in Japanese).
[016] [O] S. Okada, Support of Borel measures, J. Austral. Math. Soc. Ser. A 27 (1979), 221-231.
[017] [P] P. Prinz, Negligible sets of Radon measures, Proc. Amer. Math. Soc. 89 (1983), 440-444. | Zbl 0528.28010
[018] [RaYa] R. V. Ramoorthi and S. Yamada, On the union of compact statistical structures, Osaka J. Math. 20 (1983), 257-263.
[019] [Sc] L. Schwartz, Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures, Oxford Univ. Press, London, 1973.
[020] [Ya] Y. Yasui, Generalized paracompactness, in: Topics in General Topology, K. Morita and J. Nagata (eds.), North-Holland, Amsterdam, 1989, 161-202.