Boundedness of singular integral operators with holomorphic kernels on star-shaped closed Lipschitz curves
Gaudry, Garth ; Qian, Tao ; Wang, Silei
Colloquium Mathematicae, Tome 70 (1996), p. 133-150 / Harvested from The Polish Digital Mathematics Library

The aim of this paper is to study singular integrals T generated by holomorphic kernels defined on a natural neighbourhood of the set zζ-1:z,ζ,zζ, where is a star-shaped Lipschitz curve, =exp(iz):z=x+iA(x),A'L[-π,π],A(-π)=A(π). Under suitable conditions on F and z, the operators are given by (1) TF(z)=p.v.(zη-1)F(η)(dη/η). We identify a class of kernels of the stated type that give rise to bounded operators on L2(,|d|). We establish also transference results relating the boundedness of kernels on closed Lipschitz curves to corresponding results on periodic, unbounded curves.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:210391
@article{bwmeta1.element.bwnjournal-article-cmv70i1p133bwm,
     author = {Garth Gaudry and Tao Qian and Silei Wang},
     title = {Boundedness of singular integral operators with holomorphic kernels on star-shaped closed Lipschitz curves},
     journal = {Colloquium Mathematicae},
     volume = {70},
     year = {1996},
     pages = {133-150},
     zbl = {0860.42013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv70i1p133bwm}
}
Gaudry, Garth; Qian, Tao; Wang, Silei. Boundedness of singular integral operators with holomorphic kernels on star-shaped closed Lipschitz curves. Colloquium Mathematicae, Tome 70 (1996) pp. 133-150. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv70i1p133bwm/

[000] [D] G. David, Opérateurs intégraux singuliers sur certaines courbes du plan complexe, Ann. Sci. École Norm. Sup. 17 (1984), 157-189. | Zbl 0537.42016

[001] [DJS] G. David, J.-L. Journé et S. Semmes, Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation, Rev. Mat. Iberoamericana 1 (1985), 1-56. | Zbl 0604.42014

[002] [CGQ] M. G. Cowling, G. I. Gaudry and T. Qian, A note on martingales with respect to complex measures, in: Miniconf. on Operators in Analysis, Macquarie Univ., Sept. 1989, Proc. Centre Math. Anal. Austral. Nat. Univ. 24, Austral. Nat. Univ., Canberra, 1989, 10-27.

[003] [CJS] R. R. Coifman, P. W. Jones and S. Semmes, Two elementary proofs of the L2 boundedness of Cauchy integrals on Lipschitz curves, J. Amer. Math. Soc. 2 (1989), 553-564. | Zbl 0713.42010

[004] [CM1] R. Coifman and Y. Meyer, Fourier analysis of multilinear convolutions, Calderón's theorem, and analysis on Lipschitz curves, in: Lecture Notes in Math. 779, Springer 1980, 104-122.

[005] [CM2] R. Coifman and Y. Meyer, Au-delà des opérateurs pseudo-différentiels, Astérisque 57 (1978). | Zbl 0483.35082

[006] [CMcM] R. Coifman, A. McIntosh et Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur L2 pour les courbes lipschitziennes, Ann. of Math. 116 (1982), 361-387.

[007] [deL] K. de Leeuw, On Lp multipliers, Ann. of Math. 81 (1965), 364-379.

[008] [EG] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Springer, 1970.

[009] [GLQ] A martingale proof of L2 boundedness of Clifford-valued singular integrals, Ann. Mat. Pura Appl. 165 (1993), 369-394. | Zbl 0814.42009

[010] [JK] D. Jerison and C. Kenig, Hardy spaces, A, and singular integrals on chord-arc domains, Math. Scand. 50 (1982), 221-247. | Zbl 0509.30025

[011] [K] C. E. Kenig, Weighted Hp spaces on Lipschitz domains, Amer. J. Math. 102 (1980), 129-163.

[012] [LMcS] C. Li, A. McIntosh and S. Semmes, Convolution singular integral operators on Lipschitz surfaces, to appear.

[013] [LMcQ] C. Li, A. McIntosh and T. Qian, Clifford algebras, Fourier transforms and singular convolution operators on Lipschitz surfaces, Rev. Mat. Iberoamericana, to appear.

[014] [Mc] A. McIntosh, Operators which have an H-functional calculus, in: Miniconf. on Operator Theory and Partial Differential Equations, 1986, Proc. Centre Math. Anal. Austral. Nat. Univ. Canberra, 14 Austral. Nat. Univ., 1986, 210-231.

[015] [McQ1] A. McIntosh and T. Qian, Convolution singular integral operators on Lipschitz curves, in: Lecture Notes in Math. 1494, Springer, 1991, 142-162. | Zbl 0791.42012

[016] [McQ2] A. McIntosh and T. Qian, A note on singular integrals with holomorphic kernels, Approx. Theory Appl. 6 (1990), 40-54.

[017] [McQ3] A. McIntosh and T. Qian, Fourier multipliers on Lipschitz curves, Trans. Amer. Math. Soc. 333 (1992), 157-176. | Zbl 0766.42005

[018] [Q] T. Qian, Singular integrals with holomorphic kernels and Fourier multipliers on star-shaped closed Lipschitz curves, preprint. | Zbl 0924.42012

[019] [SW] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971.

[020] [T] T. Tao, Convolution operators generated by right-monogenic and harmonic kernels, M.Sc. thesis, Flinders Univ. of South Australia, 1992; Paper of same title, submitted.

[021] [Z] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, 1968. | Zbl 0157.38204