The aim of this paper is to study singular integrals T generated by holomorphic kernels defined on a natural neighbourhood of the set , where is a star-shaped Lipschitz curve, . Under suitable conditions on F and z, the operators are given by (1) We identify a class of kernels of the stated type that give rise to bounded operators on . We establish also transference results relating the boundedness of kernels on closed Lipschitz curves to corresponding results on periodic, unbounded curves.
@article{bwmeta1.element.bwnjournal-article-cmv70i1p133bwm, author = {Garth Gaudry and Tao Qian and Silei Wang}, title = {Boundedness of singular integral operators with holomorphic kernels on star-shaped closed Lipschitz curves}, journal = {Colloquium Mathematicae}, volume = {70}, year = {1996}, pages = {133-150}, zbl = {0860.42013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv70i1p133bwm} }
Gaudry, Garth; Qian, Tao; Wang, Silei. Boundedness of singular integral operators with holomorphic kernels on star-shaped closed Lipschitz curves. Colloquium Mathematicae, Tome 70 (1996) pp. 133-150. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv70i1p133bwm/
[000] [D] G. David, Opérateurs intégraux singuliers sur certaines courbes du plan complexe, Ann. Sci. École Norm. Sup. 17 (1984), 157-189. | Zbl 0537.42016
[001] [DJS] G. David, J.-L. Journé et S. Semmes, Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation, Rev. Mat. Iberoamericana 1 (1985), 1-56. | Zbl 0604.42014
[002] [CGQ] M. G. Cowling, G. I. Gaudry and T. Qian, A note on martingales with respect to complex measures, in: Miniconf. on Operators in Analysis, Macquarie Univ., Sept. 1989, Proc. Centre Math. Anal. Austral. Nat. Univ. 24, Austral. Nat. Univ., Canberra, 1989, 10-27.
[003] [CJS] R. R. Coifman, P. W. Jones and S. Semmes, Two elementary proofs of the boundedness of Cauchy integrals on Lipschitz curves, J. Amer. Math. Soc. 2 (1989), 553-564. | Zbl 0713.42010
[004] [CM1] R. Coifman and Y. Meyer, Fourier analysis of multilinear convolutions, Calderón's theorem, and analysis on Lipschitz curves, in: Lecture Notes in Math. 779, Springer 1980, 104-122.
[005] [CM2] R. Coifman and Y. Meyer, Au-delà des opérateurs pseudo-différentiels, Astérisque 57 (1978). | Zbl 0483.35082
[006] [CMcM] R. Coifman, A. McIntosh et Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur pour les courbes lipschitziennes, Ann. of Math. 116 (1982), 361-387.
[007] [deL] K. de Leeuw, On multipliers, Ann. of Math. 81 (1965), 364-379.
[008] [EG] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Springer, 1970.
[009] [GLQ] A martingale proof of boundedness of Clifford-valued singular integrals, Ann. Mat. Pura Appl. 165 (1993), 369-394. | Zbl 0814.42009
[010] [JK] D. Jerison and C. Kenig, Hardy spaces, , and singular integrals on chord-arc domains, Math. Scand. 50 (1982), 221-247. | Zbl 0509.30025
[011] [K] C. E. Kenig, Weighted spaces on Lipschitz domains, Amer. J. Math. 102 (1980), 129-163.
[012] [LMcS] C. Li, A. McIntosh and S. Semmes, Convolution singular integral operators on Lipschitz surfaces, to appear.
[013] [LMcQ] C. Li, A. McIntosh and T. Qian, Clifford algebras, Fourier transforms and singular convolution operators on Lipschitz surfaces, Rev. Mat. Iberoamericana, to appear.
[014] [Mc] A. McIntosh, Operators which have an -functional calculus, in: Miniconf. on Operator Theory and Partial Differential Equations, 1986, Proc. Centre Math. Anal. Austral. Nat. Univ. Canberra, 14 Austral. Nat. Univ., 1986, 210-231.
[015] [McQ1] A. McIntosh and T. Qian, Convolution singular integral operators on Lipschitz curves, in: Lecture Notes in Math. 1494, Springer, 1991, 142-162. | Zbl 0791.42012
[016] [McQ2] A. McIntosh and T. Qian, A note on singular integrals with holomorphic kernels, Approx. Theory Appl. 6 (1990), 40-54.
[017] [McQ3] A. McIntosh and T. Qian, Fourier multipliers on Lipschitz curves, Trans. Amer. Math. Soc. 333 (1992), 157-176. | Zbl 0766.42005
[018] [Q] T. Qian, Singular integrals with holomorphic kernels and Fourier multipliers on star-shaped closed Lipschitz curves, preprint. | Zbl 0924.42012
[019] [SW] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971.
[020] [T] T. Tao, Convolution operators generated by right-monogenic and harmonic kernels, M.Sc. thesis, Flinders Univ. of South Australia, 1992; Paper of same title, submitted.
[021] [Z] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, 1968. | Zbl 0157.38204