We present a negative answer to problem 3.7(b) posed on page 193 of [2], where, in fact, A. Rosłanowski asked: Does every set of Lebesgue measure zero belong to some Mycielski ideal?
@article{bwmeta1.element.bwnjournal-article-cmv69i2p297bwm, author = {Szymon Plewik}, title = {On some problem of A. Ros\l anowski}, journal = {Colloquium Mathematicae}, volume = {70}, year = {1996}, pages = {297-298}, zbl = {0839.04005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv69i2p297bwm} }
Plewik, Szymon. On some problem of A. Rosłanowski. Colloquium Mathematicae, Tome 70 (1996) pp. 297-298. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv69i2p297bwm/
[000] [1] E. Borel, Sur les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ. Mat. Palermo 29 (1909), 247-271. | Zbl 40.0283.01
[001] [2] A. Rosłanowski, Mycielski ideals generated by uncountable systems, Colloq. Math. 66 (1994), 187-200. | Zbl 0833.04002