We prove that if the Euclidean plane contains an uncountable collection of pairwise disjoint copies of a tree-like continuum X, then the symmetric span of X is zero, sX = 0. We also construct a modification of the Oversteegen-Tymchatyn example: for each ε > 0 there exists a tree such that σX < ε but X cannot be covered by any 1-chain. These are partial solutions of some well-known problems in continua theory.
@article{bwmeta1.element.bwnjournal-article-cmv69i2p289bwm, author = {Du\v san Repov\v s and Arkadij Skopenkov and Evgenij \v S\v cepin}, title = {On uncountable collections of continua and their span}, journal = {Colloquium Mathematicae}, volume = {70}, year = {1996}, pages = {289-296}, zbl = {0882.54030}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv69i2p289bwm} }
Repovš, Dušan; Skopenkov, Arkadij; Ščepin, Evgenij. On uncountable collections of continua and their span. Colloquium Mathematicae, Tome 70 (1996) pp. 289-296. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv69i2p289bwm/
[000] [1] R. D. Anderson, Continuous collections of continuous curves, Duke Math. J. 21 (1954), 363-367. | Zbl 0056.16104
[001] [2] V. I. Arnold, Ordinary Differential Equations, Nauka, Moscow, 1971 (in Russian).
[002] [3] B. J. Baker and M. Laidacker, Embedding uncountably many mutually exclusive continua into Euclidean space, Canad. Math. Bull. 32 (1989), 207-214. | Zbl 0677.57009
[003] [4] C. E. Burgess, Collections and sequences of continua in the plane I, II, Pacific J. Math. 5 (1955), 325-333; 11 (1961), 447-454. | Zbl 0065.38301
[004] [5] C. E. Burgess, Continua which have width zero, Proc. Amer. Math. Soc. 13 (1962), 477-481. | Zbl 0106.36801
[005] [6] P. E. Conner and E. E. Floyd, Fixed points free involutions and equivariant maps, Bull. Amer. Math. Soc. 66 (1960), 416-441. | Zbl 0106.16301
[006] [7] H. Cook, W. T. Ingram and A. Lelek, Eleven annotated problems about continua, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, Amsterdam, 1990, 295-302.
[007] [8] J. F. Davis, The equivalence of zero span and zero semispan, Proc. Amer. Math. Soc. 90 (1984), 133-138. | Zbl 0538.54026
[008] [9] D E. K. van Douwen, Uncountably many pairwise disjoint copies of one metrizable compactum in another, Topology Appl. 51 (1993), 87-91. | Zbl 0801.54010
[009] [10] W. T. Ingram, An uncountable collection of mutually exclusive planar atriodic tree-like continua with positive span, Fund. Math. 85 (1974), 73-78. | Zbl 0281.54014
[010] [11] H. Kato, A. Koyama and E. D. Tymchatyn, Mappings with zero surjective span, Houston J. Math. 17 (1991), 325-333. | Zbl 0765.54025
[011] [12] A. Lelek, Disjoint mappings and the span of the spaces, Fund. Math. 55 (1964), 199-214. | Zbl 0142.39802
[012] [13] P. Minc, On simplicial maps and chainable continua, Topology Appl. 57 (1994), 1-21. | Zbl 0853.54031
[013] [14] R. L. Moore, Concerning triods in the plane and the junction points of plane continua, Proc. Nat. Acad. Sci. U.S.A. 14 (1928), 85-88. | Zbl 54.0630.03
[014] [15] L. G. Oversteegen, On span and chainability of continua, Houston J. Math. 15 (1989), 573-593. | Zbl 0708.54028
[015] [16] L. Oversteegen and E. D. Tymchatyn, Plane strips and the span of continua I, II, ibid. 8 (1982), 129-142; 10 (1984), 255-266. | Zbl 0506.54022
[016] [17] C. R. Pittman, An elementary proof of the triod theorem, Proc. Amer. Math. Soc. 25 (1970), 919. | Zbl 0197.19501
[017] [18] D. Repovš and E. V. Ščepin, On the symmetric span of continua, Abstracts Amer. Math. Soc. 14 (1993), 319, No. 93T-54-42.
[018] [19] D. Repovš, A. B. Skopenkov and E. V. Ščepin, On embeddability of X×I into Euclidean space, Houston J. Math. 21 (1995), 199-204. | Zbl 0856.57018
[019] [20] J. H. Roberts, Concerning atriodic continua, Monatsh. Math. 37 (1930), 223-230. | Zbl 56.1143.03
[020] [21] K. Sieklucki, A generalization of a theorem of K. Borsuk concerning the dimension of ANR-sets, Bull. Acad. Polon. Sci. 10 (1962), 433-463; Erratum, 12 (1964), 695.
[021] [22] G. S. Young, Jr., A generalization of Moore's theorem on simple triods, Bull. Amer. Math. Soc. 5 (1944), 714. | Zbl 0060.40207