The Riemann theorem and divergent permutations
Wituła, Roman
Colloquium Mathematicae, Tome 70 (1996), p. 275-287 / Harvested from The Polish Digital Mathematics Library

In this paper the fundamental algebraic propeties of convergent and divergent permutations of ℕ are presented. A permutation p of ℕ is said to be divergent if at least one conditionally convergent series an of real terms is rearranged by p to a divergent series ap(n). All other permutations of ℕ are called convergent. Some generalizations of the Riemann theorem about the set of limit points of the partial sums of rearrangements of a given conditionally convergent series are also studied.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:210341
@article{bwmeta1.element.bwnjournal-article-cmv69i2p275bwm,
     author = {Roman Witu\l a},
     title = {The Riemann theorem and divergent permutations},
     journal = {Colloquium Mathematicae},
     volume = {70},
     year = {1996},
     pages = {275-287},
     zbl = {0840.40002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv69i2p275bwm}
}
Wituła, Roman. The Riemann theorem and divergent permutations. Colloquium Mathematicae, Tome 70 (1996) pp. 275-287. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv69i2p275bwm/

[000] [1] R. P. Agnew, Permutations preserving convergence of series, Proc. Amer. Math. Soc. 6 (1955), 563-564. | Zbl 0067.28601

[001] [2] P. H. Diananda, On rearrangements of series, Proc. Cambridge Philos. Soc. 58 (1962), 158-159. | Zbl 0104.27802

[002] [3] P. H. Diananda, On rearrangements of series II, Colloq. Math. 9 (1962), 277-279. | Zbl 0141.06203

[003] [4] P. H. Diananda, On rearrangements of series IV, ibid. 12 (1964), 85-86. | Zbl 0131.05401

[004] [5] F. Garibay, P. Greenberg, L. Resendis and J. J. Rivaud, The geometry of sum-preserving permutations, Pacific J. Math. 135 (1988), 313-322. | Zbl 0694.40003

[005] [6] U. C. Guha, On Levi's theorem on rearrangement of convergent series, Indian J. Math. 9 (1967), 91-93. | Zbl 0173.05801

[006] [7] M. C. Hu and J. K. Wang, On rearrangements of series, Bull. Inst. Math. Acad. Sinica 7 (1979), 363-376. | Zbl 0429.40001

[007] [8] E. H. Johnston, Rearrangements of divergent series, Rocky Mountain J. Math. 13 (1983), 143-153. | Zbl 0539.40002

[008] [9] E. H. Johnston, Rearrangements that preserve rates of divergence, Canad. J. Math. 34 (1982), 916-920. | Zbl 0458.05005

[009] [10] F. W. Levi, Rearrangement of convergent series, Duke Math. J. 13 (1946), 579-585. | Zbl 0060.15405

[010] [11] H. Miller and E. Ozturk, Two results on the rearrangement of series, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 17 (2) (1987), 1-8. | Zbl 0717.40004

[011] [12] E. Ozturk, On a generalization of Riemann's theorem and its application to summability methods, Bull. Inst. Math. Acad. Sinica 10 (1982), 373-380.

[012] [13] P. A. B. Pleasants, Rearrangements that preserve convergence, J. London Math. Soc. (2) 15 (1977), 134-142. | Zbl 0344.40001

[013] [14] M. A. Sarigol, Permutation preserving convergence and divergence of series, Bull. Inst. Math. Acad. Sinica 16 (1988), 221-227. | Zbl 0719.40002

[014] [15] M. A. Sarigol, On absolute equivalence of permutation functions, ibid. 19 (1991), 69-74.

[015] [16] M. A. Sarigol, A short proof of Levi's theorem on rearrangement of convergent series, Doğa Mat. 16 (1992), 201-205.

[016] [17] P. Schaefer, Sum-preserving rearrangements of infinite series, Amer. Math. Monthly 88 (1981), 33-40. | Zbl 0455.40007

[017] [18] J. H. Smith, Rearrangements of conditionally convergent series with preassigned cycle type, Proc. Amer. Math. Soc. 47 (1975), 167-170. | Zbl 0304.40003

[018] [19] G. S. Stoller, The convergence-preserving rearrangements of real infinite series, Pacific J. Math. 73 (1977), 227-231. | Zbl 0364.40001

[019] [20] Q. F. Stout, On Levi's duality between permutations and convergent series, J. London Math. Soc. 34 (1986), 67-80. | Zbl 0633.40004

[020] [21] R. Wituła, On the set of limit points of the partial sums of series rearranged by a given divergent permutation, J. Math. Anal. Appl., to appear. | Zbl 1187.40007

[021] [22] R. Wituła, Convergent and divergent permutations--the algebraic and analytic properties, in preparation. | Zbl 1313.40004

[022] [23] R. Wituła, Convergence-preserving functions, Nieuw Arch. Wisk., to appear. | Zbl 0858.40004