On the volume method in the study of Auerbach bases of finite-dimensional normed spaces
Plichko, Anatolij
Colloquium Mathematicae, Tome 70 (1996), p. 267-270 / Harvested from The Polish Digital Mathematics Library

In this note we show that if the ratio of the minimal volume V of n-dimensional parallelepipeds containing the unit ball of an n-dimensional real normed space X to the maximal volume v of n-dimensional crosspolytopes inscribed in this ball is equal to n!, then the relation of orthogonality in X is symmetric. Hence we deduce the following properties: (i) if V/v=n! and if n>2, then X is an inner product space; (ii) in every finite-dimensional normed space there exist at least two different Auerbach bases and (iii) the finite-dimensional normed space X is an inner product space provided any two Auerbach bases are isometrically equivalent. Property (i) generalizes a result of Lenz [8], and (iii) answers a question of R. J. Knowles and T. A. Cook [7].

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:210339
@article{bwmeta1.element.bwnjournal-article-cmv69i2p267bwm,
     author = {Anatolij Plichko},
     title = {On the volume method in the study of Auerbach bases of finite-dimensional normed spaces},
     journal = {Colloquium Mathematicae},
     volume = {70},
     year = {1996},
     pages = {267-270},
     zbl = {0884.46012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv69i2p267bwm}
}
Plichko, Anatolij. On the volume method in the study of Auerbach bases of finite-dimensional normed spaces. Colloquium Mathematicae, Tome 70 (1996) pp. 267-270. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv69i2p267bwm/

[000] [1] H. Auerbach, O polu krzywych wypukłych o średnicach sprzężonych (On the area of convex curves with conjugate diameters), Ph.D. thesis, L'viv University, 1930 (in Polish).

[001] [2] H. Auerbach, Über eine Eigenschaft der Eilinien mit Mittelpunkt, Ann. Soc. Polon. Math. 9 (1930), 204.

[002] [3] H. Auerbach, Sur les groupes linéaires bornés, I-III, Studia Math. 4 (1933), 113-127, 158-166; 5 (1934), 43-49. | Zbl 59.1093.05

[003] [4] S. Banach, Théorie des opérations linéaires, Warszawa, 1932. | Zbl 0005.20901

[004] [5] M. M. Day, Polygons circumscribed about closed convex curves, Trans. Amer. Math. Soc. 62 (1947), 315-319. | Zbl 0034.25301

[005] [6] R. C. James, Inner products in normed linear spaces, Bull. Amer. Math. Soc. 53 (1947), 559-566. | Zbl 0041.43701

[006] [7] R. J. Knowles and T. A. Cook, Some results on Auerbach bases for finite-dimensional normed spaces, Bull. Soc. Roy. Sci. Liège 42 (1973), 518-522. | Zbl 0275.46011

[007] [8] H. Lenz, Eine Kennzeichnung des Ellipsoids, Arch. Math. (Basel) 8 (1957), 209-211. | Zbl 0078.35802

[008] [9] A. Yu. Levin and Yu. I. Petunin, Some questions connected with the notion of orthogonality in a Banach space, Uspekhi Mat. Nauk 18 (3) (1963), 167-170 (in Russian). | Zbl 0171.33302

[009] [10] A. Pełczyński and S. J. Szarek, On parallelepipeds of minimal volume containing a convex symmetric body in n, Math. Proc. Cambridge Philos. Soc. 109 (1991), 125-148. | Zbl 0718.52007

[010] [11] A. Pietsch, Operator Ideals, Deutsch. Verlag Wiss., Berlin, 1978.

[011] [12] S. Rolewicz, Metric Linear Spaces, Reidel and PWN, Dordrecht-Warszawa, 1985.

[012] [13] A. F. Ruston, Auerbach's theorem and tensor products of Banach spaces, Proc. Cambridge Philos. Soc. 58 (1962), 476-480. | Zbl 0108.10902

[013] [14] A. E. Taylor, A geometric theorem and its application to biorthogonal systems, Bull. Amer. Math. Soc. 53 (1947), 614-616. | Zbl 0031.40502