The unconditional pointwise convergence of orthogonal seriesin L2 over a von Neumann algebra
Hensz, Ewa ; Jajte, Ryszard ; Paszkiewicz, Adam
Colloquium Mathematicae, Tome 70 (1996), p. 167-178 / Harvested from The Polish Digital Mathematics Library

The paper is devoted to some problems concerning a convergence of pointwise type in the L2-space over a von Neumann algebra M with a faithful normal state Φ [3]. Here L2=L2(M,Φ) is the completion of M under the norm x|x|2=Φ(x*x)1/2.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:210333
@article{bwmeta1.element.bwnjournal-article-cmv69i2p167bwm,
     author = {Ewa Hensz and Ryszard Jajte and Adam Paszkiewicz},
     title = {The unconditional pointwise convergence of orthogonal seriesin $L\_2$ over a von Neumann algebra},
     journal = {Colloquium Mathematicae},
     volume = {70},
     year = {1996},
     pages = {167-178},
     zbl = {0856.46034},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv69i2p167bwm}
}
Hensz, Ewa; Jajte, Ryszard; Paszkiewicz, Adam. The unconditional pointwise convergence of orthogonal seriesin $L_2$ over a von Neumann algebra. Colloquium Mathematicae, Tome 70 (1996) pp. 167-178. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv69i2p167bwm/

[000] [1] G. Alexits, Convergence Problems of Orthogonal Series, Pergamon Press, New York, 1961.

[001] [2] C. J. K. Batty, The strong law of large numbers for states and traces of a W*-algebra, Z. Wahrsch. Verw. Gebiete 48 (1979), 177-191. | Zbl 0395.60033

[002] [3] O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics I, Springer, New York, 1979. | Zbl 0421.46048

[003] [4] M. S. Goldstein, Theorems in almost everywhere convergence, J. Operator Theory 6 (1981), 233-311 (in Russian). | Zbl 0488.46053

[004] [5] E. Hensz, Strong laws of large numbers for orthogonal sequences in von Neumann algebras, in: Proc. Probability Theory on Vector Spaces IV, Łańcut 1987, Lecture Notes in Math. 1391, Springer, 1989, 112-124.

[005] [6] E. Hensz and R. Jajte, Pointwise convergence theorems in L2 over a von Neumann algebra, Math. Z. 193 (1986), 413-429. | Zbl 0613.46056

[006] [7] E. Hensz, R. Jajte and A. Paszkiewicz, Topics in pointwise convergence in L2 over a von Neumann algebra, Quantum Probab. Related Topics 9 (1994), 239-271.

[007] [8] R. Jajte, Strong limit theorems for orthogonal sequences in von Neumann algebras, Proc. Amer. Math. Soc. 94 (1985), 229-236. | Zbl 0601.46058

[008] [9] R. Jajte, Strong Limit Theorems in Noncommutative Probability, Lecture Notes in Math. 1110, Springer, Berlin, 1985.

[009] [10] R. Jajte, Almost sure convergence of iterates of contractions in noncommutative L2-spaces, Math. Z. 205 (1990), 165-176. | Zbl 0739.46048

[010] [11] R. Jajte, Strong Limit Theorems in Noncommutative L2-Spaces, Lecture Notes in Math. 1477, Springer, Berlin, 1991. | Zbl 0743.46069

[011] [12] E. C. Lance, Ergodic theorem for convex sets and operator algebras, Invent. Math. 37 (1976), 201-214. | Zbl 0338.46054

[012] [13] W. Orlicz, Zur Theorie der Orthogonalreihen, Bull. Internat. Acad. Polon. Sci. Sér. A (1927), 81-115. | Zbl 53.0265.05

[013] [14] A. Paszkiewicz, Convergence in W*-algebras, J. Funct. Anal. 69 (1986), 143-154. | Zbl 0612.46060

[014] [15] I. E. Segal, A non-commutative extension of abstract integration, Ann. of Math. 57 (1953), 401-457. | Zbl 0051.34201

[015] [16] Ya. G. Sinai and V. V. Anshelevich, Some problems of non-commutative ergodic theory, Russian Math. Surveys 31 (1976), 157-174. | Zbl 0365.46053

[016] [17] K. Tandori, Über die orthogonalen Funktionen X (unbedingte Konvergenz), Acta Sci. Math. (Szeged) 23 (1962), 185-221. | Zbl 0144.32103