In this paper we consider a subset  of a Banach algebra A (containing all elements of A which have a generalized inverse) and characterize membership in the closure of the invertibles for the elements of Â. Thus our result yields a characterization of the closure of the invertible group for all those Banach algebras A which satisfy  = A. In particular, we prove that  = A when A is a von Neumann algebra. We also derive from our characterization new proofs of previously known results, namely Feldman and Kadison's characterization of the closure of the invertibles in a von Neumann algebra and a more recent characterization of the closure of the invertibles in the bounded linear operators on a Hilbert space.
@article{bwmeta1.element.bwnjournal-article-cmv69i2p157bwm, author = {Laura Burlando and Robin Harte}, title = {The closure of the invertibles in a von Neumann algebra}, journal = {Colloquium Mathematicae}, volume = {70}, year = {1996}, pages = {157-165}, zbl = {0848.46038}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv69i2p157bwm} }
Burlando, Laura; Harte, Robin. The closure of the invertibles in a von Neumann algebra. Colloquium Mathematicae, Tome 70 (1996) pp. 157-165. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv69i2p157bwm/
[000] [1] R. Bouldin, The essential minimum modulus, Indiana Univ. Math. J. 30 (1981), 513-517. | Zbl 0483.47015
[001] [2] R. Bouldin, Closure of the invertible operators in Hilbert space, Proc. Amer. Math. Soc. 108 (1990), 721-726. | Zbl 0691.47001
[002] [3] R. Bouldin, Approximating Fredholm operators on a nonseparable Hilbert space, Glasgow Math. J. 35 (1993), 167-178. | Zbl 0806.47011
[003] [4] L. Burlando, On continuity of the spectral radius function in Banach algebras, Ann. Mat. Pura Appl. (4) 156 (1990), 357-380. | Zbl 0726.46027
[004] [5] L. Burlando, Distance formulas on operators whose kernel has fixed Hilbert dimension, Rend. Mat. (7) 10 (1990), 209-238. | Zbl 0725.47020
[005] [6] L. Burlando, Approximation by semi-Fredholm and semi-α-Fredholm operators in Hilbert spaces of arbitrary dimension, to appear. | Zbl 0938.47010
[006] [7] G. Edgar, J. Ernest and S. G. Lee, Weighing operator spectra, Indiana Univ. Math. J. 21 (1971), 61-80. | Zbl 0219.47001
[007] [8] J. Feldman and R. V. Kadison, The closure of the regular operators in a ring of operators, Proc. Amer. Math. Soc. 5 (1954), 909-916. | Zbl 0056.33704
[008] [9] C. W. Groetsch, Representations of the generalized inverse, J. Math. Anal. Appl. 49 (1975), 154-157.
[009] [10] R. E. Harte, Regular boundary elements, Proc. Amer. Math. Soc. 99 (1987), 328-330. | Zbl 0617.46052
[010] [11] R. E. Harte, Invertibility and Singularity for Bounded Linear Operators, Dekker, New York, 1988. | Zbl 0636.47001
[011] [12] R. E. Harte and M. Mbekhta, On generalized inverses in C*-algebras, Studia Math. 103 (1992), 71-77. | Zbl 0810.46062
[012] [13] R. E. Harte and M. Mbekhta, Generalized inverses in C*-algebras II, ibid. 106 (1993), 129-138. | Zbl 0810.46063
[013] [14] R. E. Harte and M. Ó Searcóid, Positive elements and the B* condition, Math. Z. 193 (1986), 1-9. | Zbl 0611.46061
[014] [15] T. Kato, Perturbation Theory for Linear Operators, Springer, New York, 1966. | Zbl 0148.12601
[015] [16] G. J. Murphy, C*-algebras and Operator Theory, Academic Press, 1990.
[016] [17] C. Olsen, Unitary approximation, J. Funct. Anal. 85 (1989), 392-419. | Zbl 0684.46049
[017] [18] G. K. Pedersen, Unitary extension and polar decomposition in a C*-algebra, J. Operator Theory 17 (1987), 357-364. | Zbl 0646.46053
[018] [19] S. Sakai, C*-algebras and W*-algebras, Springer, New York, 1971.
[019] [20] J. Weidmann, Linear Operators in Hilbert Spaces, Springer, New York, 1980.