We prove that on a product of generalized Heisenberg groups, a Hörmander type multiplier theorem for Rockland operators is true with the critical index n/2 + ϵ, ϵ>0, where n is the euclidean (topological) dimension of the group.
@article{bwmeta1.element.bwnjournal-article-cmv69i1p29bwm, author = {Waldemar Hebisch and Jacek Zienkiewicz}, title = {Multiplier theorem on generalized Heisenberg groups II}, journal = {Colloquium Mathematicae}, volume = {70}, year = {1996}, pages = {29-36}, zbl = {0835.43009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv69i1p29bwm} }
Hebisch, Waldemar; Zienkiewicz, Jacek. Multiplier theorem on generalized Heisenberg groups II. Colloquium Mathematicae, Tome 70 (1996) pp. 29-36. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv69i1p29bwm/
[000] [1] M. Christ, bound for spectral multiplier on nilpotent groups, Trans. Amer. Math. Soc. 328 (1991), 73-81.
[001] [2] J. Cygan, Heat kernels for class 2 nilpotent groups, Studia Math. 64 (1979), 227-238. | Zbl 0336.35029
[002] [3] J. Dziubański, A remark on a Marcinkiewicz-Hörmander multiplier theorem for some non-differential convolution operators, Colloq. Math. 58 (1989), 77-83. | Zbl 0711.43003
[003] [4] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, 1982. | Zbl 0508.42025
[004] [5] B. Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents, Acta Math. 139 (1977), 95-153.
[005] [6] P. Głowacki, The Rockland condition for nondifferential convolution operators, Duke Math. J. 58 (1989), 371-395. | Zbl 0678.43002
[006] [7] W. Hebisch, A multiplier theorem for Schrödinger operators, Colloq. Math. 60/61 (1990), 659-664. | Zbl 0779.35025
[007] [8] W. Hebisch, Almost everywhere summability of eigenfunction expansions associated to elliptic operators, Studia Math. 96 (1990), 263-275. | Zbl 0716.35053
[008] [9] W. Hebisch, Multiplier theorem on generalized Heisenberg groups, Colloq. Math. 65 (1993), 231-239. | Zbl 0841.43009
[009] [10] W. Hebisch and A. Sikora, A smooth subadditive homogeneous norm on a homogeneous group, Studia Math. 96 (1990), 231-236. | Zbl 0723.22007
[010] [11] B. Helffer et J. Nourrigat, Caractérisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe gradué, Comm. Partial Differential Equations 3 (1978), 889-958. | Zbl 0423.35040
[011] [12] A. Hulanicki, Subalgebra of associated with laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287. | Zbl 0316.43005
[012] [13] A. Hulanicki, The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipticity of certain subelliptic operators on the Heisenberg group, Studia Math. 56 (1976), 165-179. | Zbl 0336.22007
[013] [14] A. Hulanicki and J. W. Jenkins, Nilpotent Lie groups and summability of eigenfunction expansions of Schrödinger operators, ibid. 80 (1984), 235-244.
[014] [15] G. Mauceri and S. Meda, Vector-valued multipliers on stratified groups, Rev. Mat. Iberoamericana 3-4 (6) (1990), 141-154. | Zbl 0763.43005
[015] [16] D. Müller and E. M. Stein, On spectral multipliers for Heisenberg and related groups, J. Math. Pures Appl., to appear. | Zbl 0838.43011
[016] [17] J. Randall, The heat kernel for generalized Heisenberg groups, to appear. | Zbl 0897.43007