Radial growth and variation of univalent functions and of Dirichlet finite holomorphic functions
Girela, Daniel
Colloquium Mathematicae, Tome 70 (1996), p. 19-17 / Harvested from The Polish Digital Mathematics Library

A well known result of Beurling asserts that if f is a function which is analytic in the unit disc Δ=z:|z|<1 and if either f is univalent or f has a finite Dirichlet integral then the set of points eiθ for which the radial variation V(f,eiθ)=01|f'(reiθ)|dr is infinite is a set of logarithmic capacity zero. In this paper we prove that this result is sharp in a very strong sense. Also, we prove that if f is as above then the set of points eiθ such that (1-r)|f'(reiθ)|o(1) as r → 1 is a set of logarithmic capacity zero. In particular, our results give an answer to a question raised by T. H. MacGregor in 1983.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:210320
@article{bwmeta1.element.bwnjournal-article-cmv69i1p19bwm,
     author = {Daniel Girela},
     title = {Radial growth and variation of univalent functions and of Dirichlet finite holomorphic functions},
     journal = {Colloquium Mathematicae},
     volume = {70},
     year = {1996},
     pages = {19-17},
     zbl = {0840.30017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv69i1p19bwm}
}
Girela, Daniel. Radial growth and variation of univalent functions and of Dirichlet finite holomorphic functions. Colloquium Mathematicae, Tome 70 (1996) pp. 19-17. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv69i1p19bwm/

[000] [1] A. Beurling, Ensembles exceptionnels, Acta Math. 72 (1940), 1-13. | Zbl 66.0449.01

[001] [2] J. Clunie and T. H. MacGregor, Radial growth of the derivative of univalent functions, Comment. Math. Helv. 59 (1984), 362-375. | Zbl 0549.30012

[002] [3] E. F. Collingwood and A. J. Lohwater, The Theory of Cluster Sets, Cambridge University Press, London, 1966. | Zbl 0149.03003

[003] [4] P. L. Duren, Univalent Functions, Springer, New York, 1983.

[004] [5] T. M. Flett, On the radial order of a univalent function, J. Math. Soc. Japan 11 (1959), 1-3. | Zbl 0084.07001

[005] [6] F. W. Gehring, On the radial order of subharmonic functions, ibid. 9 (1957), 77-79. | Zbl 0078.06401

[006] [7] D. Girela, On analytic functions with finite Dirichlet integral, Complex Variables Theory Appl. 12 (1989), 9-15. | Zbl 0696.30031

[007] [8] D. J. Hallenbeck and K. Samotij, Radial growth and variation of Dirichlet finite holomorphic functions in the disk, Colloq. Math. 58 (1990), 317-325. | Zbl 0712.30036

[008] [9] A. J. Lohwater and G. Piranian, On the derivative of a univalent function, Proc. Amer. Math. Soc. 4 (1953), 591-594. | Zbl 0050.30202

[009] [10] T. H. MacGregor, Radial growth of a univalent function and its derivatives off sets of measure zero, in: Contemp. Math. 38, Amer. Math. Soc., 1985, 69-76.

[010] [11] N. G. Makarov, On the distortion of boundary sets under conformal mappings, Proc. London Math. Soc. (3) 51 (1986), 369-384.

[011] [12] R. Nevanlinna, Analytic Functions, Springer, New York, 1970. | Zbl 0199.12501

[012] [13] W. Seidel and J. L. Walsh, On the derivatives of functions analytic in the unit disc and their radii of univalence and of p-valence, Trans. Amer. Math. Soc. 52 (1942), 128-216. | Zbl 0060.22002

[013] [14] M. Tsuji, Beurling's theorem on exceptional sets, Tôhoku Math. J. 2 (1950), 113-125. | Zbl 0041.40601

[014] [15] M. Tsuji, Potential Theory in Modern Function Theory, Chelsea, New York, 1975. | Zbl 0322.30001

[015] [16] A. Zygmund, On certain integrals, Trans. Amer. Math. Soc. 55 (1944), 170-204. | Zbl 0061.13902