In his paper "Continuous mappings on continua" [5], T. Maćkowiak collected results concerning mappings on metric continua. These results are theorems, counterexamples, and unsolved problems and are listed in a series of tables at the ends of chapters. It is the purpose of the present paper to provide solutions (three proofs and one example) to four of those problems.
@article{bwmeta1.element.bwnjournal-article-cmv69i1p133bwm, author = {E. Grace and E. Vought}, title = {Four mapping problems of Ma\'ckowiak}, journal = {Colloquium Mathematicae}, volume = {70}, year = {1996}, pages = {133-141}, zbl = {0849.54021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv69i1p133bwm} }
Grace, E.; Vought, E. Four mapping problems of Maćkowiak. Colloquium Mathematicae, Tome 70 (1996) pp. 133-141. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv69i1p133bwm/
[000] [1] R. H. Bing and F. B. Jones, Another homogeneous plane continuum, Trans. Amer. Math. Soc. 90 (1959), 171-192. | Zbl 0084.18903
[001] [2] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
[002] [3] F. B. Jones, On a certain type of homogeneous plane continuum, Proc. Amer. Math. Soc. 6 (1955), 735-740. | Zbl 0067.40506
[003] [4] K. Kuratowski, Topology, Vol. II, Academic Press, New York, 1968.
[004] [5] T. Maćkowiak, Continuous mappings on continua, Dissertationes Math. (Rozprawy Mat.) 158 (1979). | Zbl 0444.54021
[005] [6] V. C. Nall, Maps which preserve graphs, Proc. Amer. Math. Soc. 101 (1987), 563-570. | Zbl 0628.54018
[006] [7] V. C. Nall, Partially confluent maps and n-ods, Houston J. Math. 15 (1989), 409-415. | Zbl 0693.54019