We give explicit necessary and sufficient conditions for the viability of polyhedrons with respect to Itô equations. Using the viability criterion we obtain a comparison theorem for multi-dimensional Itô processes
@article{bwmeta1.element.bwnjournal-article-cmv68i2p297bwm, author = {Anna Milian}, title = {Stochastic viability and a comparison theorem}, journal = {Colloquium Mathematicae}, volume = {68}, year = {1995}, pages = {297-316}, zbl = {0820.60041}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv68i2p297bwm} }
Milian, Anna. Stochastic viability and a comparison theorem. Colloquium Mathematicae, Tome 68 (1995) pp. 297-316. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv68i2p297bwm/
[000] [1] J.-P. Aubin, Viability theory, to appear. | Zbl 1179.93001
[001] [2] J.-P. Aubin and A. Cellina, Differential Inclusions, Springer, 1984. | Zbl 0538.34007
[002] [3] J.-P. Aubin and G. Da Prato, Stochastic viability and invariance, Ann. Scuola Norm. Sup. Pisa 27 (1990), 595-694.
[003] [4] J.-P. Aubin and G. Da Prato, Stochastic Nagumo's viability theorem, Cahiers de Mathématiques de la Décision 9224, CEREMADE. | Zbl 0816.60053
[004] [5] K. Borsuk, Multidimensional Analytic Geometry, PWN, 1969.
[005] [6] R. Durrett, Brownian Motion and Martingales in Analysis, Wadsworth Adv. Books and Software, Wadsworth, Belmont, Calif., 1984. | Zbl 0554.60075
[006] [7] S. N. Ethier and T. G. Kurtz, Markov Processes. Characterization and Convergence, Wiley, 1986. | Zbl 0592.60049
[007] [8] S. Gautier and L. Thibault, Viability for constrained stochastic differential equations, Differential and Integral Equations 6 (1993), 1395-1414. | Zbl 0780.93085
[008] [9] I. I. Gihman and A. V. Skorohod, Stochastic Differential Equations, Springer, 1972. | Zbl 0242.60003
[009] [10] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, 1981. | Zbl 0495.60005
[010] [11] D. Isaacson, Stochastic integrals and derivatives, Ann. Math. Statist. 40 (1969), 1610-1616. | Zbl 0181.43504
[011] [12] A. Milian, A note on the stochastic invariance for Itô equations, Bull. Polish Acad. Sci. Math. 41 (1993), 139-150. | Zbl 0796.60071
[012] [13] B. N. Pshenichnyĭ, Convex Analysis and Extremal Problems, Nauka, Moscow, 1980 (in Russian). | Zbl 0477.90034
[013] [14] J. T. Schwartz, Nonlinear Functional Analysis, Courant Inst. Math. 1965.
[014] [15] C. Yoerp, Sur la dérivation des intégrales stochastiques, in: Sém. Probab. XV, Lecture Notes in Math. 784, Springer, 1980, 249-253.