@article{bwmeta1.element.bwnjournal-article-cmv68i2p265bwm, author = {E. Maghras}, title = {Restitution des coefficients d'ondelettes des signaux filtr\'es}, journal = {Colloquium Mathematicae}, volume = {68}, year = {1995}, pages = {265-283}, zbl = {0857.94002}, language = {fra}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv68i2p265bwm} }
Maghras, E. Restitution des coefficients d'ondelettes des signaux filtrés. Colloquium Mathematicae, Tome 68 (1995) pp. 265-283. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv68i2p265bwm/
[000] [1] C. A. Berenstein, R. Gay and A. Yger, The three squares theorem. A local version, in: Lecture Notes in Pure and Appl. Math. 122, Dekker, 1990, 35-50.
[001] [2] C. A. Berenstein, B. A. Taylor et A. Yger, Sur quelques formules explicites de déconvolution, J. Optics 14 (1983), 75-82.
[002] [3] C. A. Berenstein et A. Yger, Le problème de la déconvolution, J. Funct. Anal. 54 (1983), 113-160.
[003] [4] S. D. Casey and D. F. Walnut, Systems of convolution equations, deconvolution, Shannon sampling, and the wavelet and Gabor transforms, SIAM Rev. 36 (1994), 537-577. | Zbl 0814.45001
[004] [5] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), 909-996. | Zbl 0644.42026
[005] [6] S. Jaffard et Y. Meyer, Base d’ondelettes dans des ouverts de , J. Math. Pures Appl. 68 (1989), 95-108. | Zbl 0704.46009
[006] [7] S. Lang, Introduction to Diophantine Approximations, Addison-Wesley, Reading, Mass., 1966. | Zbl 0144.04005
[007] [8] S. G. Mallat, A theory of multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Machine Intelligence 11 (7) (1989), 674-693. | Zbl 0709.94650
[008] [9] Y. Meyer, Ondelettes et opérateurs I, Hermann, Paris, 1990. | Zbl 0694.41037
[009] [10] A. Yger et C. A. Berenstein, Traitement du signal et algorithmes explicites de déconvolution, Séminaire Bony-Sjöstrand-Meyer, École Polytechnique, 1984-1985.