@article{bwmeta1.element.bwnjournal-article-cmv68i2p259bwm, author = {J. Nymann}, title = {Linear combinations of Cantor sets}, journal = {Colloquium Mathematicae}, volume = {68}, year = {1995}, pages = {259-264}, zbl = {0880.28005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv68i2p259bwm} }
Nymann, J. Linear combinations of Cantor sets. Colloquium Mathematicae, Tome 68 (1995) pp. 259-264. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv68i2p259bwm/
[000] [1] E. Barone, Sul codominio di misure e di masse finite, Rend. Mat. Appl. 3 (2) (1983), 229-238.
[001] [2] J. A. Guthrie and J. E. Nymann, The topological structure of the set of subsums of an infinite series, Colloq. Math. 55 (1988), 323-327. | Zbl 0719.40004
[002] [3] H. Hornich, Über beliebige Teilsummen absolut konvergenter Reihen, Monatsh. Math. Phys. 49 (1941), 316-320. | Zbl 0024.26001
[003] [4] S. Kakeya, On the partial sums of an infinite series, Tôhoku Sci. Rep. 3 (4) (1914), 159-164. | Zbl 45.0377.06
[004] [5] S. Koshi and H.-C. Lai, The ranges of set functions, Hokkaido Math. J. 10, special issue (1981), 348-360. | Zbl 0489.28002
[005] [6] P. K. Menon, On a class of perfect sets, Bull. Amer. Math. Soc. 54 (1948), 706-711. | Zbl 0032.27304
[006] [7] J. E. Nymann, The sum of the Cantor set with itself, Enseign. Math. 39 (1993), 177-178. | Zbl 0859.28005
[007] [8] M. Pavone, The Cantor set and a geometric construction, ibid. 35 (1989), 41-49. | Zbl 0702.11006
[008] [9] J. Shallit, Q785, Math. Mag. 64 (5) (1991), 351 and 357.
[009] [10] P. Mendes and F. Oliveira, On the topological structure of the arithmetic sum of two Cantor sets, Nonlinearity 7 (1994), 329-343. | Zbl 0839.54027