Let T be a d×d matrix with integer entries and with eigenvalues >1 in modulus. Let f be a lipschitzian function of positive order. We prove that the series converges almost everywhere with respect to Lebesgue measure provided that .
@article{bwmeta1.element.bwnjournal-article-cmv68i2p241bwm, author = {Ai Fan}, title = {Almost Everywhere Convergence of Riesz-Raikov Series}, journal = {Colloquium Mathematicae}, volume = {68}, year = {1995}, pages = {241-248}, zbl = {0868.28009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv68i2p241bwm} }
Fan, Ai. Almost Everywhere Convergence of Riesz-Raikov Series. Colloquium Mathematicae, Tome 68 (1995) pp. 241-248. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv68i2p241bwm/
[000] [1] G. Brown and A. H. Dooley, Odometer actions on G-measures, Ergodic Theory Dynamical Systems, 11 (1991), 279-307. | Zbl 0739.58032
[001] [2] M. Kac, R. Salem and A. Zygmund, A gap theorem, Trans. Amer. Math. Soc. 63 (1948), 235-243. | Zbl 0032.27402
[002] [3] S. Kakutani and K. Petersen, The speed of convergence in the Ergodic Theorem, Monatsh. Math. 91 (1981), 11-18. | Zbl 0446.28015
[003] [4] K. Petersen, Ergodic Theory, Cambridge Univ. Press, 1983.
[004] [5] D. A. Raikov, On some arithmetical properties of summable functions, Mat. Sb. 1 (43) (1936), 377-384 (in Russian). | Zbl 0014.39701
[005] [6] F. Riesz, Sur la théorie ergodique, Comment. Math. Helv. 17 (1944-1945), 217-248.
[006] [7] J. Rosenblatt, Convergence of series of translations, Math. Ann. 230 (1977), 245-272. | Zbl 0341.40002
[007] [8] J. Rosenblatt and A. del Junco, Counterexamples in ergodic theory and number theory, Math. Ann. 245 (1979), 185-197. | Zbl 0398.28021
[008] [9] A. Zygmund, Trigonometric Series, Vols. I and II, Cambridge Univ. Press, 1959.