Existence and nonexistence of solutions for a model of gravitational interaction of particles, III
Biler, Piotr
Colloquium Mathematicae, Tome 68 (1995), p. 229-239 / Harvested from The Polish Digital Mathematics Library
Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:210307
@article{bwmeta1.element.bwnjournal-article-cmv68i2p229bwm,
     author = {Piotr Biler},
     title = {Existence and nonexistence of solutions for a model of gravitational interaction of particles, III},
     journal = {Colloquium Mathematicae},
     volume = {68},
     year = {1995},
     pages = {229-239},
     zbl = {0836.35076},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv68i2p229bwm}
}
Biler, Piotr. Existence and nonexistence of solutions for a model of gravitational interaction of particles, III. Colloquium Mathematicae, Tome 68 (1995) pp. 229-239. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv68i2p229bwm/

[000] [1] J. Aguirre and M. Escobedo, On the blow-up of solutions of a convective reaction-diffusion equation, Proc. Roy. Soc. Edinburgh 123A (1993), 433-460. | Zbl 0801.35038

[001] [2] P. Baras et M. Pierre, Problèmes paraboliques semi-linéaires avec données mesures, Applicable Anal. 18 (1984), 111-149. | Zbl 0582.35060

[002] [3] P. Baras et M. Pierre, Critère d'existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 185-212. | Zbl 0599.35073

[003] [4] P. Biler, Existence and asymptotics of solutions for a parabolic-elliptic system with nonlinear no-flux boundary conditions, Nonlinear Anal. 19 (1992), 1121-1136. | Zbl 0781.35025

[004] [5] P. Biler, The Cauchy problem and self-similar solutions for a nonlinear parabolic equation, preprint, 1994.

[005] [6] P. Biler, W. Hebisch and T. Nadzieja, The Debye system: existence and large time behavior of solutions, Nonlinear Anal. 23 (1994), 1189-1209. | Zbl 0814.35054

[006] [7] P. Biler, D. Hilhorst and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, II, Colloq. Math. 67 (1994), 297-308. | Zbl 0832.35015

[007] [8] P. Biler and T. Nadzieja, A class of nonlocal parabolic problems occurring in statistical mechanics, ibid. 66 (1993), 131-145. | Zbl 0818.35046

[008] [9] P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, I, ibid. 66 (1994), 319-334. | Zbl 0817.35041

[009] [10] Y. Derriennic, Entropie, théorèmes limite et marches aléatoires, in: Probability Measures on Groups VIII, H. Heyer (ed.), Lecture Notes in Math. 1210, Springer, Berlin, 1986, 241-284.

[010] [11] Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38 (1985), 297-319. | Zbl 0585.35051

[011] [12] Y. Giga and R. V. Kohn, Nondegeneracy of blowup for semilinear heat equations, ibid. 42 (1989), 845-884. | Zbl 0703.35020

[012] [13] O. Kavian, A remark on the blowing-up solutions to the Cauchy problem for nonlinear Schrödinger equations, Trans. Amer. Math. Soc. 299 (1987), 193-203. | Zbl 0638.35043

[013] [14] A. Krzywicki and T. Nadzieja, A nonstationary problem in the theory of electrolytes, Quart. Appl. Math. 50 (1992), 105-107. | Zbl 0754.35142

[014] [15] A. A. Lacey and D. E. Tzanetis, Global unbounded solutions to a parabolic equation, J. Differential Equations 101 (1993), 80-102. | Zbl 0799.35123

[015] [16] A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, Springer, New York, 1994.

[016] [17] R. McEliece, The Theory of Information and Coding, Encyclopedia Math. Appl. 3, Addison-Wesley, Reading, 1977.

[017] [18] T. Nadzieja, A model of radially symmetric cloud of self-attracting particles, Applicationes Math., to appear. | Zbl 0839.35110