@article{bwmeta1.element.bwnjournal-article-cmv68i2p187bwm, author = {J. W\'ojcik}, title = {Criterion for a field to be abelian}, journal = {Colloquium Mathematicae}, volume = {68}, year = {1995}, pages = {187-191}, zbl = {0827.11063}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv68i2p187bwm} }
Wójcik, J. Criterion for a field to be abelian. Colloquium Mathematicae, Tome 68 (1995) pp. 187-191. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv68i2p187bwm/
[000] [1] H. Hasse, Invariante Kennzeichnung relativ-abelscher Zahlkörper mit vorgegebener Galoisgruppe über einem Teilkörper des Grundkörpers, Abh. Deutsch. Akad. Wiss. 8 (1947), 5-56. | Zbl 0033.15802
[001] [2] G. Karpilowsky, Topics in Field Theory, North-Holland, Amsterdam, 1989.
[002] [3] A. Schinzel, Abelian binomials, power residues and exponential congruences, Acta Arith. 32 (1977), 245-274. | Zbl 0409.12029
[003] [4] J. Wójcik, Powers of cyclotomic numbers, Comment. Math. 32 (1992), 213-223. | Zbl 0768.11042
[004] [5] W. Y. Yelez, On normal binomials, ibid. 36 (1980), 113-124.