Minimax theorems with applications to convex metric spaces
Kindler, Jürgen
Colloquium Mathematicae, Tome 68 (1995), p. 179-186 / Harvested from The Polish Digital Mathematics Library

A minimax theorem is proved which contains a recent result of Pinelis and a version of the classical minimax theorem of Ky Fan as special cases. Some applications to the theory of convex metric spaces (farthest points, rendez-vous value) are presented.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:210301
@article{bwmeta1.element.bwnjournal-article-cmv68i2p179bwm,
     author = {Kindler, J\"urgen},
     title = {Minimax theorems with applications to convex metric spaces},
     journal = {Colloquium Mathematicae},
     volume = {68},
     year = {1995},
     pages = {179-186},
     zbl = {0844.49002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv68i2p179bwm}
}
Kindler, Jürgen. Minimax theorems with applications to convex metric spaces. Colloquium Mathematicae, Tome 68 (1995) pp. 179-186. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv68i2p179bwm/

[000] [1] A. A. Astaneh, On singletonness of uniquely remotal sets, Indian J. Pure Appl. Math. 17 (9) (1986), 1137-1139. | Zbl 0612.46018

[001] [2] R. G. Bilyeu, Metric definition of the linear structure, Proc. Amer. Math. Soc. 25 (1970), 205-206. | Zbl 0194.14601

[002] [3] L. M. Blumenthal and K. Menger, Studies in Geometry, Freeman, San Francisco, 1970. | Zbl 0204.53401

[003] [4] J. Cleary, S. A. Morris and D. Yost, Numerical geometry-numbers for shapes, Amer. Math. Monthly 93 (1986), 260-275. | Zbl 0598.51014

[004] [5] M. De Wilde, Doubles limites ordonnées et théorèmes de minimax, Ann. Inst. Fourier (Grenoble) 24 (1974), 181-188. | Zbl 0289.49019

[005] [6] K. Fan, Minimax theorems, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 42-47.

[006] [7] I. Glicksberg, Minimax theorem for upper and lower semi-continuous payoffs, The RAND Corporation Research Memorandum RM-478 (1950).

[007] [8] O. Gross, The rendezvous value of a metric space, in: Advances in Game Theory, Ann. of Math. Stud. 52, Princeton Univ. Press, 1964, 49-53. | Zbl 0126.16401

[008] [9] Y. Kijima, Fixed points of nonexpansive self-maps of a compact metric space, J. Math. Anal. Appl. 123 (1987), 114-116. | Zbl 0618.47049

[009] [10] J. Kindler, Minimaxtheoreme und das Integraldarstellungsproblem, Manuscripta Math. 29 (1979), 277-294. | Zbl 0425.90089

[010] [11] J. Kindler, Minimaxtheoreme für die diskrete gemischte Erweiterung von Spielen und ein Approximationssatz, Math. Operationsforsch. Statist. Ser. Optim. 11 (1980), 473-485. | Zbl 0453.90104

[011] [12] J. Kindler, Minimax theorems with one-sided randomization, Acta Math. Hungar., to appear. | Zbl 0854.90144

[012] [13] H. König, Über das von Neumannsche Minimax-Theorem, Arch. Math. (Basel) 19 (1968), 482-487. | Zbl 0179.21001

[013] [14] S. A. Morris and P. Nickolas, On the average distance property of compact connected metric spaces, Arch. Math. (Basel) 40 (1983), 459-463. | Zbl 0528.54028

[014] [15] M. Neumann, Bemerkungen zum von Neumannschen Minimaxtheorem, ibid. 29 (1977), 96-105.

[015] [16] J. E. L. Peck and A. L. Dulmage, Games on a compact set, Canad. J. Math. 9 (1957), 450-458. | Zbl 0078.32704

[016] [17] I. F. Pinelis, On minimax risk, Theory Probab. Appl. 35 (1990), 104-109. | Zbl 0711.62008

[017] [18] I. F. Pinelis, On minimax estimation of regression, ibid., 500-512.

[018] [19] W. Stadje, A property of compact connected spaces, Arch. Math. (Basel) 36 (1981), 275-280. | Zbl 0457.54017

[019] [20] W. Takahashi, A convexity in metric space and nonexpansive mappings, I, Kōdai Math. Sem. Rep. 22 (1970), 142-149. | Zbl 0268.54048

[020] [21] L. Yang and J. Zhang, Average distance constants of some compact convex space, J. China Univ. Sci. Tech. 17 (1987), 17-23. | Zbl 0646.54035