A note on the integer solutions ofhyperelliptic equations
Le, Maohua
Colloquium Mathematicae, Tome 68 (1995), p. 171-177 / Harvested from The Polish Digital Mathematics Library
Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:210300
@article{bwmeta1.element.bwnjournal-article-cmv68i2p171bwm,
     author = {Maohua Le},
     title = {A note on the integer solutions ofhyperelliptic equations},
     journal = {Colloquium Mathematicae},
     volume = {68},
     year = {1995},
     pages = {171-177},
     zbl = {0824.11014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv68i2p171bwm}
}
Le, Maohua. A note on the integer solutions ofhyperelliptic equations. Colloquium Mathematicae, Tome 68 (1995) pp. 171-177. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv68i2p171bwm/

[000] [1] A. Baker, Bounds for the solutions of the hyperelliptic equation, Proc. Cambridge Philos. Soc. 65 (1969), 439-444. | Zbl 0174.33803

[001] [2] L.-K. Hua, Introduction to Number Theory, Springer, Berlin, 1982.

[002] [3] C. Ko, On the diophantine equation x2=yn+1, xy ≠ 0, Sci. Sinica 14 (1964), 457-460.

[003] [4] V. A. Lebesgue, Sur l’impossibilité, en nombres entiers, de l’équation xm=y2+1, Nouv. Ann. Math. (1) 9 (1850), 178-181.

[004] [5] W. J. LeVeque, On the equation ym=f(x), Acta Arith. 9 (1964), 209-219. | Zbl 0127.27201

[005] [6] W. Ljunggren, Noen setninger om ubestemte likninger av formen (xn-1)/(x-1)=yq, Norsk. Mat. Tidsskr. 25 (1943), 17-20.

[006] [7] H. L. Montgomery and R. C. Vaughan, The order of magnitude of mth coefficients of cyclotomic polynomials, Glasgow Math. J. 27 (1985), 143-159. | Zbl 0577.10009

[007] [8] J. Riordan, Introduction to Combinatorial Analysis, Wiley, 1958.

[008] [9] A. Rotkiewicz and W. Złotkowski, On the diophantine equation 1+p1α+......+pkα=y2, in: Number Theory, Vol. II (Budapest 1987), North-Holland, Amsterdam, 1990, 917-937.

[009] [10] V. G. Sprindžuk, Hyperelliptic diophantine equation and class numbers of ideals, Acta Arith. 30 (1976), 95-108 (in Russian). | Zbl 0335.10021

[010] [11] P. G. Walsh, A quantitative version of Runge's theorem on diophantine equations, Acta Arith. 62 (1992), 157-172. | Zbl 0769.11017