Loading [MathJax]/extensions/MathZoom.js
Estimates for the Bergman and Szegö projections in two symmetric domains of n
Bekollé, David ; Bonami, Aline
Colloquium Mathematicae, Tome 68 (1995), p. 81-100 / Harvested from The Polish Digital Mathematics Library
Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:210298
@article{bwmeta1.element.bwnjournal-article-cmv68i1p81bwm,
     author = {David Bekoll\'e and Aline Bonami},
     title = {Estimates for the Bergman and Szeg\"o projections in two symmetric domains of $$\mathbb{C}$^{n}$
            },
     journal = {Colloquium Mathematicae},
     volume = {68},
     year = {1995},
     pages = {81-100},
     zbl = {0863.47018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv68i1p81bwm}
}
Bekollé, David; Bonami, Aline. Estimates for the Bergman and Szegö projections in two symmetric domains of $ℂ^{n}$
            . Colloquium Mathematicae, Tome 68 (1995) pp. 81-100. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv68i1p81bwm/

[000] [1] D. Bekollé, Solutions avec estimations de l'équation des ondes, in: Séminaire Analyse Harmonique 1983-1984, Publ. Math. Orsay, 1985, 113-125. | Zbl 0595.35019

[001] [2] D. Bekollé, Le dual de l'espace des fonctions holomorphes intégrables dans des domaines de Siegel, Ann. Inst. Fourier (Grenoble) 33 (3) (1984), 125-154. | Zbl 0513.32032

[002] [3] D. Bekollé et M. Omporo, Le dual de la classe de Bergman A1 dans la boule de Lie de n, C. R. Acad. Sci. Paris 311 (1990), 235-238.

[003] [4] D. Bekollé and A. Temgoua Kagou, Reproducing properties and Lp estimates for Bergman projections in Siegel domains of type II, submitted. | Zbl 0842.32016

[004] [5] E. Cartan, Sur les domaines bornés homogènes de l'espace de n variables complexes, Abh. Math. Sem. Hamburg 11 (1935), 116-162. | Zbl 0011.12302

[005] [6] C. Fefferman, The multiplier problem for the ball, Ann. of Math. 94 (1971), 330-336. | Zbl 0234.42009

[006] [7] F. Forelli and W. Rudin, Projections on spaces of holomorphic functions in balls, Indiana Univ. Math. J. 24 (1974), 593-602. | Zbl 0297.47041

[007] [8] S. G. Gindikin, Analysis on homogeneous domains, Russian Math. Surveys 19 (1964), 1-89.

[008] [9] L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, Transl. Math. Monographs 6, Amer. Math. Soc., Providence, 1963.

[009] [10] B. Jöricke, Continuity of the Cauchy projection in Hölder norms for classical domains, Math. Nachr. 113 (1983), 227-244. | Zbl 0579.32006

[010] [11] A. Korányi and S. Vági, Singular integrals on homogeneous spaces and some problems of classical analysis, Ann. Scuola Norm. Sup. Pisa 25 (1971), 575-648. | Zbl 0291.43014

[011] [12] E. M. Stein, Some problems in harmonic analysis suggested by symmetric spaces and semi-simple groups, in: Proc. Intern. Congress of Math. Nice 1, 1970, 173-189.

[012] [13] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, 1971. | Zbl 0232.42007

[013] [14] S. Vági, Harmonic analysis in Cartan and Siegel domains, in: Studies in Harmonic Analysis, J. M. Ash (ed.), MAA Stud. Math. 13, 1976, 257-309. | Zbl 0352.32031

[014] [15] S. Yan, Duality and differential operators on the Bergman spaces of bounded symmetric domains, J. Funct. Anal. 105 (1992), 171-187. | Zbl 0782.47028

[015] [16] K. H. Zhu, Duality and Hankel operators on the Bergman spaces of bounded symmetric domains, ibid. 81 (1988), 260-278. | Zbl 0669.47019