The aim of this paper is to demonstrate how a fairly simple nilpotent Lie algebra can be used as a tool to study differential operators on with polynomial coefficients, especially when the property studied depends only on the degree of the polynomials involved and/or the number of variables.
@article{bwmeta1.element.bwnjournal-article-cmv68i1p7bwm, author = {Jacek Dziuba\'nski and Andrzej Hulanicki and Joe Jenkins}, title = {A nilpotent Lie algebra and eigenvalue estimates}, journal = {Colloquium Mathematicae}, volume = {68}, year = {1995}, pages = {7-16}, zbl = {0837.43012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv68i1p7bwm} }
Dziubański, Jacek; Hulanicki, Andrzej; Jenkins, Joe. A nilpotent Lie algebra and eigenvalue estimates. Colloquium Mathematicae, Tome 68 (1995) pp. 7-16. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv68i1p7bwm/
[000] [Br] I. D. Brown, Dual topology of a nilpotent Lie group, Ann. Sci. École Normale Sup. (4) 6 (1973), 407-411. | Zbl 0284.57026
[001] [Fe] C. L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206.
[002] [Fell] J. M. G. Fell, The dual spaces of C*-algebras, Trans. Amer. Math. Soc. 94 (1960), 365-403. | Zbl 0090.32803
[003] [FS] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton, N .J., 1982. | Zbl 0508.42025
[004] [Gł] P. Głowacki, The Rockland condition for non-differential convolution operators, Duke Math. J. 58 (1989), 371-395. | Zbl 0678.43002
[005] [HN] B. Helffer et J. Nourrigat, Caractérisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe gradué, Comm. Partial Differential Equations 4 (1978), 899-958. | Zbl 0423.35040
[006] [HJ] A. Hulanicki and J. W. Jenkins, Nilpotent Lie groups and eigenfunction expansions of Schrödinger operators II, Studia Math. 87 (1987), 239-252. | Zbl 0654.43004
[007] [HJL] A. Hulanicki, J. W. Jenkins and J. Ludwig, Minimum eigenvalues for positive Rockland operators, Proc. Amer. Math. Soc. 94 (1985), 718-720. | Zbl 0546.43008