Planar rational compacta
Feggos, L. ; Iliadis, S. ; Zafiridou, S.
Colloquium Mathematicae, Tome 68 (1995), p. 49-54 / Harvested from The Polish Digital Mathematics Library

In this paper we consider rational subspaces of the plane. A rational space is a space which has a basis of open sets with countable boundaries. In the special case where the boundaries are finite, the space is called rim-finite.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:210292
@article{bwmeta1.element.bwnjournal-article-cmv68i1p49bwm,
     author = {L. Feggos and S. Iliadis and S. Zafiridou},
     title = {Planar rational compacta},
     journal = {Colloquium Mathematicae},
     volume = {68},
     year = {1995},
     pages = {49-54},
     zbl = {0849.54010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv68i1p49bwm}
}
Feggos, L.; Iliadis, S.; Zafiridou, S. Planar rational compacta. Colloquium Mathematicae, Tome 68 (1995) pp. 49-54. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv68i1p49bwm/

[000] [1] L. E. Feggos, S. D. Iliadis and S. S. Zafiridou, Some families of planar rim-scattered spaces and universality, Houston J. Math. 20 (1994), 1-15. | Zbl 0836.54024

[001] [2] S. D. Iliadis, The rim-type of spaces and the property of universality, ibid. 13 (1987), 373-388. | Zbl 0655.54025

[002] [3] S. D. Iliadis, Rational spaces and the property of universality, Fund. Math. 131 (1988), 167-184. | Zbl 0694.54024

[003] [4] S. D. Iliadis and S. S. Zafiridou, Planar rational compacta and universality, ibid. 141 (1992), 109-118. | Zbl 0799.54024

[004] [5] K. Kuratowski, Topology, Vols. I, II, Academic Press, New York, 1966, 1968.

[005] [6] J. C. Mayer and E. D. Tymchatyn, Containing spaces for planar rational compacta, Dissertationes Math. 300 (1990). | Zbl 0721.54022

[006] [7] J. C. Mayer and E. D. Tymchatyn, Universal rational spaces, Dissertationes Math. 293 (1990).

[007] [8] G. Nöbeling, Über regulär-eindimensionale Räume, Math. Ann. 104 (1931), 81-91.

[008] [9] G. T. Whyburn, Topological Analysis, Princeton Univ. Press, Princeton, N.J., 1964. | Zbl 0186.55901