In this paper we consider rational subspaces of the plane. A rational space is a space which has a basis of open sets with countable boundaries. In the special case where the boundaries are finite, the space is called rim-finite.
@article{bwmeta1.element.bwnjournal-article-cmv68i1p49bwm, author = {L. Feggos and S. Iliadis and S. Zafiridou}, title = {Planar rational compacta}, journal = {Colloquium Mathematicae}, volume = {68}, year = {1995}, pages = {49-54}, zbl = {0849.54010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv68i1p49bwm} }
Feggos, L.; Iliadis, S.; Zafiridou, S. Planar rational compacta. Colloquium Mathematicae, Tome 68 (1995) pp. 49-54. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv68i1p49bwm/
[000] [1] L. E. Feggos, S. D. Iliadis and S. S. Zafiridou, Some families of planar rim-scattered spaces and universality, Houston J. Math. 20 (1994), 1-15. | Zbl 0836.54024
[001] [2] S. D. Iliadis, The rim-type of spaces and the property of universality, ibid. 13 (1987), 373-388. | Zbl 0655.54025
[002] [3] S. D. Iliadis, Rational spaces and the property of universality, Fund. Math. 131 (1988), 167-184. | Zbl 0694.54024
[003] [4] S. D. Iliadis and S. S. Zafiridou, Planar rational compacta and universality, ibid. 141 (1992), 109-118. | Zbl 0799.54024
[004] [5] K. Kuratowski, Topology, Vols. I, II, Academic Press, New York, 1966, 1968.
[005] [6] J. C. Mayer and E. D. Tymchatyn, Containing spaces for planar rational compacta, Dissertationes Math. 300 (1990). | Zbl 0721.54022
[006] [7] J. C. Mayer and E. D. Tymchatyn, Universal rational spaces, Dissertationes Math. 293 (1990).
[007] [8] G. Nöbeling, Über regulär-eindimensionale Räume, Math. Ann. 104 (1931), 81-91.
[008] [9] G. T. Whyburn, Topological Analysis, Princeton Univ. Press, Princeton, N.J., 1964. | Zbl 0186.55901