On Müntz rational approximation in multivariables
Zhou, S.
Colloquium Mathematicae, Tome 68 (1995), p. 39-47 / Harvested from The Polish Digital Mathematics Library

The present paper shows that for any s sequences of real numbers, each with infinitely many distinct elements, λnj, j=1,...,s, the rational combinations of x1λm11x2λm22...xsλmss are always dense in CIs.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:210291
@article{bwmeta1.element.bwnjournal-article-cmv68i1p39bwm,
     author = {Zhou, S.},
     title = {On M\"untz rational approximation in multivariables},
     journal = {Colloquium Mathematicae},
     volume = {68},
     year = {1995},
     pages = {39-47},
     zbl = {0819.41014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv68i1p39bwm}
}
Zhou, S. On Müntz rational approximation in multivariables. Colloquium Mathematicae, Tome 68 (1995) pp. 39-47. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv68i1p39bwm/

[000] [1] J. Bak and D. J. Newman, Rational combinations of xλk, λk0 are always dense in C[0,1], J. Approx. Theory 23 (1978), 155-157. | Zbl 0385.41007

[001] [2] E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, 1966. | Zbl 0161.25202

[002] [3] G. G. Lorentz, Bernstein Polynomials, Toronto, 1953.

[003] [4] D. J. Newman, Approximation with Rational Functions, Amer. Math. Soc., Providence, R.I., 1978.

[004] [5] S. Ogawa and K. Kitahara, An extension of Müntz's theorem in multivariables, Bull. Austral. Math. Soc. 36 (1987), 375-387. | Zbl 0631.41007

[005] [6] G. Somorjai, A Müntz-type problem for rational approximation, Acta Math. Acad. Sci. Hungar. 27 (1976), 197-199. | Zbl 0333.41012

[006] [7] S. P. Zhou, On Müntz rational approximation, Constr. Approx. 9 (1993), 435-444. | Zbl 0780.41010