The present paper shows that for any sequences of real numbers, each with infinitely many distinct elements, , j=1,...,s, the rational combinations of are always dense in .
@article{bwmeta1.element.bwnjournal-article-cmv68i1p39bwm, author = {Zhou, S.}, title = {On M\"untz rational approximation in multivariables}, journal = {Colloquium Mathematicae}, volume = {68}, year = {1995}, pages = {39-47}, zbl = {0819.41014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv68i1p39bwm} }
Zhou, S. On Müntz rational approximation in multivariables. Colloquium Mathematicae, Tome 68 (1995) pp. 39-47. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv68i1p39bwm/
[000] [1] J. Bak and D. J. Newman, Rational combinations of , are always dense in , J. Approx. Theory 23 (1978), 155-157. | Zbl 0385.41007
[001] [2] E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, 1966. | Zbl 0161.25202
[002] [3] G. G. Lorentz, Bernstein Polynomials, Toronto, 1953.
[003] [4] D. J. Newman, Approximation with Rational Functions, Amer. Math. Soc., Providence, R.I., 1978.
[004] [5] S. Ogawa and K. Kitahara, An extension of Müntz's theorem in multivariables, Bull. Austral. Math. Soc. 36 (1987), 375-387. | Zbl 0631.41007
[005] [6] G. Somorjai, A Müntz-type problem for rational approximation, Acta Math. Acad. Sci. Hungar. 27 (1976), 197-199. | Zbl 0333.41012
[006] [7] S. P. Zhou, On Müntz rational approximation, Constr. Approx. 9 (1993), 435-444. | Zbl 0780.41010