This paper is concerned with weak uniform normal structure and iterative fixed points of nonexpansive mappings. Precisely, in Section 1, we show that the geometrical coefficient β(X) for a Banach space X recently introduced by Jimenez-Melado [8] is exactly the weakly convergent sequence coefficient WCS(X) introduced by Bynum [1] in 1980. We then show in Section 2 that all kinds of James' quasi-reflexive spaces have weak uniform normal structure. Finally, in Section 3, we show that in a space X with weak uniform normal structure, every nonexpansive self-mapping defined on a weakly sequentially compact convex subset of X admits an iterative fixed point.
@article{bwmeta1.element.bwnjournal-article-cmv68i1p17bwm, author = {Dom\'\i nguez Benavides, T. and L\'opez Acedo, G. and Xu, Hong}, title = {Weak uniform normal structure and iterative fixed points of nonexpansive mappings}, journal = {Colloquium Mathematicae}, volume = {68}, year = {1995}, pages = {17-23}, zbl = {0845.46006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv68i1p17bwm} }
Domínguez Benavides, T.; López Acedo, G.; Xu, Hong. Weak uniform normal structure and iterative fixed points of nonexpansive mappings. Colloquium Mathematicae, Tome 68 (1995) pp. 17-23. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv68i1p17bwm/
[000] [1] W. L. Bynum, Normal structure coefficients for Banach spaces, Pacific J. Math. 86 (1980), 427-436. | Zbl 0442.46018
[001] [2] T. Domínguez Benavides, Weak uniform normal structure in direct-sum spaces, Studia Math. 103 (1992), 283-290. | Zbl 0810.46015
[002] [3] T. Domínguez Benavides, Some properties of the set and ball measures of noncompactness and applications, J. London Math. Soc. 34 (1986), 120-128. | Zbl 0578.47045
[003] [4] T. Domínguez Benavides and G. López Acedo, Lower bounds for normal structure coefficients, Proc. Roy. Soc. Edinburgh 121A (1992), 245-252. | Zbl 0787.46010
[004] [5] M. Edelstein and R. C. O'Brien, Nonexpansive mappings, asymptotic regularity, and successive approximations, J. London Math. Soc. 17 (1978), 547-554. | Zbl 0421.47031
[005] [6] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, 1990. | Zbl 0708.47031
[006] [7] S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc. 59 (1976), 65-71. | Zbl 0352.47024
[007] [8] A. Jimenez-Melado, Stability of weak normal structure in James quasi reflexive space, Bull. Austral. Math. Soc. 46 (1992), 367-372.
[008] [9] M. A. Khamsi, James quasi reflexive space has the fixed point property, ibid. 39 (1989), 25-30. | Zbl 0672.47045
[009] [10] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006. | Zbl 0141.32402
[010] [11] E. Maluta, Uniformly normal structure and related coefficients for Banach spaces, Pacific J. Math. 111 (1984), 357-369. | Zbl 0495.46012
[011] [12] P. M. Soardi, Schauder bases and fixed points of nonexpansive mappings, Pacific J. Math. 101 (1982), 193-198. | Zbl 0457.47046