Weak uniform normal structure and iterative fixed points of nonexpansive mappings
Domínguez Benavides, T. ; López Acedo, G. ; Xu, Hong
Colloquium Mathematicae, Tome 68 (1995), p. 17-23 / Harvested from The Polish Digital Mathematics Library

This paper is concerned with weak uniform normal structure and iterative fixed points of nonexpansive mappings. Precisely, in Section 1, we show that the geometrical coefficient β(X) for a Banach space X recently introduced by Jimenez-Melado [8] is exactly the weakly convergent sequence coefficient WCS(X) introduced by Bynum [1] in 1980. We then show in Section 2 that all kinds of James' quasi-reflexive spaces have weak uniform normal structure. Finally, in Section 3, we show that in a space X with weak uniform normal structure, every nonexpansive self-mapping defined on a weakly sequentially compact convex subset of X admits an iterative fixed point.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:210288
@article{bwmeta1.element.bwnjournal-article-cmv68i1p17bwm,
     author = {Dom\'\i nguez Benavides, T. and L\'opez Acedo, G. and Xu, Hong},
     title = {Weak uniform normal structure and iterative fixed points of nonexpansive mappings},
     journal = {Colloquium Mathematicae},
     volume = {68},
     year = {1995},
     pages = {17-23},
     zbl = {0845.46006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv68i1p17bwm}
}
Domínguez Benavides, T.; López Acedo, G.; Xu, Hong. Weak uniform normal structure and iterative fixed points of nonexpansive mappings. Colloquium Mathematicae, Tome 68 (1995) pp. 17-23. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv68i1p17bwm/

[000] [1] W. L. Bynum, Normal structure coefficients for Banach spaces, Pacific J. Math. 86 (1980), 427-436. | Zbl 0442.46018

[001] [2] T. Domínguez Benavides, Weak uniform normal structure in direct-sum spaces, Studia Math. 103 (1992), 283-290. | Zbl 0810.46015

[002] [3] T. Domínguez Benavides, Some properties of the set and ball measures of noncompactness and applications, J. London Math. Soc. 34 (1986), 120-128. | Zbl 0578.47045

[003] [4] T. Domínguez Benavides and G. López Acedo, Lower bounds for normal structure coefficients, Proc. Roy. Soc. Edinburgh 121A (1992), 245-252. | Zbl 0787.46010

[004] [5] M. Edelstein and R. C. O'Brien, Nonexpansive mappings, asymptotic regularity, and successive approximations, J. London Math. Soc. 17 (1978), 547-554. | Zbl 0421.47031

[005] [6] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, 1990. | Zbl 0708.47031

[006] [7] S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc. 59 (1976), 65-71. | Zbl 0352.47024

[007] [8] A. Jimenez-Melado, Stability of weak normal structure in James quasi reflexive space, Bull. Austral. Math. Soc. 46 (1992), 367-372.

[008] [9] M. A. Khamsi, James quasi reflexive space has the fixed point property, ibid. 39 (1989), 25-30. | Zbl 0672.47045

[009] [10] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006. | Zbl 0141.32402

[010] [11] E. Maluta, Uniformly normal structure and related coefficients for Banach spaces, Pacific J. Math. 111 (1984), 357-369. | Zbl 0495.46012

[011] [12] P. M. Soardi, Schauder bases and fixed points of nonexpansive mappings, Pacific J. Math. 101 (1982), 193-198. | Zbl 0457.47046