An application of modules of generalized fractions to grades of ideals and Gorenstein rings
Zakeri, H.
Colloquium Mathematicae, Tome 67 (1994), p. 281-288 / Harvested from The Polish Digital Mathematics Library
Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:210280
@article{bwmeta1.element.bwnjournal-article-cmv67i2p281bwm,
     author = {H. Zakeri},
     title = {An application of modules of generalized fractions to grades of ideals and Gorenstein rings},
     journal = {Colloquium Mathematicae},
     volume = {67},
     year = {1994},
     pages = {281-288},
     zbl = {0848.13013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv67i2p281bwm}
}
Zakeri, H. An application of modules of generalized fractions to grades of ideals and Gorenstein rings. Colloquium Mathematicae, Tome 67 (1994) pp. 281-288. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv67i2p281bwm/

[000] [1] H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28. | Zbl 0112.26604

[001] [2] D. Flores de Chela, Flat dimensions of certain modules of generalized fractions, Quart. J. Math. Oxford Ser. (2) 36 (1985), 413-423. | Zbl 0586.13007

[002] [3] S. Greco, Anelli di Gorenstein, Sem. Ist. Mat., Genova, 1968.

[003] [4] L. O'Carroll, On the generalized fractions of Sharp and Zakeri, J. London Math. Soc. (2) 28 (1983), 417-427. | Zbl 0497.13007

[004] [5] D. Rees, The grade of an ideal or module, Proc. Cambridge Philos. Soc. 53 (1957), 28-42. | Zbl 0079.26602

[005] [6] A. M. Riley, Complexes of modules of generalized fractions, thesis, University of Sheffield, 1983.

[006] [7] R. Y. Sharp and H. Zakeri, Modules of generalized fractions, Mathematika 29 (1982), 32-41. | Zbl 0497.13006

[007] [8] R. Y. Sharp and H. Zakeri, Local cohomology and modules of generalized fractions, ibid., 296-306. | Zbl 0523.13001