In this paper we give a characterization of the relatively compact subsets of the so-called approximation spaces. We treat some applications: (1) we obtain some convergence results in such spaces, and (2) we establish a condition for relative compactness of a set lying in a Besov space.
@article{bwmeta1.element.bwnjournal-article-cmv67i2p253bwm, author = {M. Fugarolas}, title = {Compactness in approximation spaces}, journal = {Colloquium Mathematicae}, volume = {67}, year = {1994}, pages = {253-262}, zbl = {0826.41030}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv67i2p253bwm} }
Fugarolas, M. Compactness in approximation spaces. Colloquium Mathematicae, Tome 67 (1994) pp. 253-262. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv67i2p253bwm/
[000] [1] Z. Ciesielski, Constructive function theory and spline systems, Studia Math. 53 (1975), 277-302. | Zbl 0273.41010
[001] [2] A. Pietsch, Approximation spaces, J. Approx. Theory 32 (1981), 115-134.
[002] [3] S. Ropela, Spline bases in Besov spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 319-325. | Zbl 0328.41008
[003] [4] B. Simon, Trace Ideals and Their Applications, London Math. Soc. Lecture Note Ser. 35, Cambridge Univ. Press, Cambridge, 1979.
[004] [5] I. Singer, Bases in Banach Spaces I, Springer, Berlin, 1970.