Radial limits of superharmonic functions in the plane
Armitage, D.
Colloquium Mathematicae, Tome 67 (1994), p. 245-252 / Harvested from The Polish Digital Mathematics Library
Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:210277
@article{bwmeta1.element.bwnjournal-article-cmv67i2p245bwm,
     author = {D. Armitage},
     title = {Radial limits of superharmonic functions in the plane},
     journal = {Colloquium Mathematicae},
     volume = {67},
     year = {1994},
     pages = {245-252},
     zbl = {0827.31001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv67i2p245bwm}
}
Armitage, D. Radial limits of superharmonic functions in the plane. Colloquium Mathematicae, Tome 67 (1994) pp. 245-252. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv67i2p245bwm/

[000] [1] L. V. Ahlfors and M. Heins, Questions of regularity connected with the Phragmén-Lindelöf principle, Ann. of Math. 50 (1949), 341-346. | Zbl 0036.04702

[001] [2] D. H. Armitage, On the extension of superharmonic functions, J. London Math. Soc. (2) 4 (1971), 215-230. | Zbl 0223.31009

[002] [3] D. H. Armitage and M. Goldstein, Radial limiting behaviour of harmonic functions in cones, Complex Variables Theory Appl., to appear. | Zbl 0791.31007

[003] [4] V. S. Azarin, Generalization of a theorem of Hayman, on subharmonic functions in an m-dimensional cone, Amer. Math. Soc. Transl. (2) 80 (1969), 119-138.

[004] [5] F. Bagemihl and W. Seidel, Some boundary properties of analytic functions, Math. Z. 61 (1954), 186-199. | Zbl 0058.06101

[005] [6] M. Brelot, Éléments de la théorie classique du potentiel, Centre de documentation universitaire, Paris, 1965.

[006] [7] P. M. Gauthier, M. Goldstein and W. H. Ow, Uniform approximation on unbounded sets by harmonic functions with logarithmic singularities, Trans. Amer. Math. Soc. 261 (1980), 160-183. | Zbl 0447.30035

[007] [8] P. M. Gauthier, M. Goldstein and W. H. Ow, Uniform approximation on closed sets by harmonic functions with Newtonian singularities, J. London Math. Soc. (2) 28 (1983), 71-82. | Zbl 0525.31002

[008] [9] L. L. Helms, Introduction to Potential Theory, Wiley, New York, 1969. | Zbl 0188.17203

[009] [10] W. J. Schneider, On the growth of entire functions along half rays, in: Entire Functions and Related Parts of Analysis, Proc. Sympos. Pure Math. 11, Amer. Math. Soc., Providence, R.I., 1968, 377-385.

[010] [11] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959. | Zbl 0087.28401