A Sard type theorem for Borel mappings
Hajłasz, Piotr
Colloquium Mathematicae, Tome 67 (1994), p. 217-221 / Harvested from The Polish Digital Mathematics Library

We find a condition for a Borel mapping f:mn which implies that the Hausdorff dimension of f-1(y) is less than or equal to m-n for almost all yn.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:210274
@article{bwmeta1.element.bwnjournal-article-cmv67i2p217bwm,
     author = {Piotr Haj\l asz},
     title = {A Sard type theorem for Borel mappings},
     journal = {Colloquium Mathematicae},
     volume = {67},
     year = {1994},
     pages = {217-221},
     zbl = {0834.28002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv67i2p217bwm}
}
Hajłasz, Piotr. A Sard type theorem for Borel mappings. Colloquium Mathematicae, Tome 67 (1994) pp. 217-221. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv67i2p217bwm/

[000] [1] B. Bojarski and P. Hajłasz, in preparation.

[001] [2] Y. Burago and V. Zalgaller, Geometric Inequalities, Grundlehren Math. Wiss. 285, Springer, 1988.

[002] [3] S. Eilenberg, On ϕ-measures, Ann. Soc. Polon. Math. 17 (1938), 252-253.

[003] [4] S. Eilenberg and O. Harold, Continua of finite linear measure I, Amer. J. Math. 65 (1943), 137-146. | Zbl 0063.01227

[004] [5] H. Federer, Geometric Measure Theory, Springer, 1969. | Zbl 0176.00801

[005] [6] P. Hajłasz, A note on weak approximation of minors, Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear. | Zbl 0910.49025

[006] [7] P. Hajłasz, Sobolev mappings, co-area formula and related topics, preprint. | Zbl 0988.28002

[007] [8] T. Jech, Set Theory, Acad. Press, 1978.

[008] [9] K. Kuratowski, Topology, Vol. 1, Acad. Press, 1966.

[009] [10] N. Lusin, Sur les ensembles analytiques, Fund. Math. 10 (1927), 1-95.

[010] [11] N. Lusin et W. Sierpiński, Sur quelques propriétés des ensembles (A), Bull. Acad. Cracovie 4-5A (1918), 35-48.

[011] [12] P. Mattila, Hausdorff dimension, orthogonal projections and intersections with planes, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), 227-244. | Zbl 0348.28019

[012] [13] J. Milnor, Topology from the Differentiable Viewpoint, The Univ. Press of Virginia, 1965. | Zbl 0136.20402

[013] [14] A. Sard, The measure of the critical values of differentiable maps, Bull. Amer. Math. Soc. 48 (1942), 883-890. | Zbl 0063.06720

[014] [15] S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, N.J., 1964.