In this paper we obtain some equivalent characterizations of Bloch functions on general bounded strongly pseudoconvex domains with smooth boundary, which extends the known results in [1, 9, 10].
@article{bwmeta1.element.bwnjournal-article-cmv67i1p99bwm, author = {Zhangjian Hu}, title = {Equivalent characterizations of Bloch functions}, journal = {Colloquium Mathematicae}, volume = {67}, year = {1994}, pages = {99-108}, zbl = {0815.32013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv67i1p99bwm} }
Hu, Zhangjian. Equivalent characterizations of Bloch functions. Colloquium Mathematicae, Tome 67 (1994) pp. 99-108. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv67i1p99bwm/
[000] [1] S. Axler, The Bergman space, the Bloch space and commutators of multiplication operators, Duke Math. J. 53 (1986), 315-332. | Zbl 0633.47014
[001] [2] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1-65. | Zbl 0289.32012
[002] [3] S. G. Krantz, Function Theory of Several Complex Variables, Wiley, New York, 1982. | Zbl 0471.32008
[003] [4] S. G. Krantz and D. Ma, The Bloch functions on strongly pseudoconvex domains, Indiana Univ. Math. J. 37 (1988), 145-165. | Zbl 0628.32006
[004] [5] H. Li, BMO, VMO and Hankel operators on the Bergman space of strongly pseudoconvex domains, J. Funct. Anal. 106 (1992), 375-408.
[005] [6] H. Li, Hankel operators on the Bergman space of strongly pseudoconvex domains, preprint. | Zbl 0817.47037
[006] [7] W. Rudin, Function Theory in the Unit Ball of , Springer, New York, 1980.
[007] [8] E. M. Stein, Boundary Behavior of Holomorphic Functions of Several Complex Variables, Princeton University Press, Princeton, N.J., 1972. | Zbl 0242.32005
[008] [9] K. Stroethoff, Besov-type characterisations for the Bloch space, Bull. Austral. Math. Soc. 39 (1989), 405-420. | Zbl 0661.30040
[009] [10] J. Zhang, Some characterizations of Bloch functions on strongly pseudoconvex domains, Colloq. Math. 63 (1992), 219-232. | Zbl 0761.32005