Equivalent characterizations of Bloch functions
Hu, Zhangjian
Colloquium Mathematicae, Tome 67 (1994), p. 99-108 / Harvested from The Polish Digital Mathematics Library

In this paper we obtain some equivalent characterizations of Bloch functions on general bounded strongly pseudoconvex domains with smooth boundary, which extends the known results in [1, 9, 10].

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:210267
@article{bwmeta1.element.bwnjournal-article-cmv67i1p99bwm,
     author = {Zhangjian Hu},
     title = {Equivalent characterizations of Bloch functions},
     journal = {Colloquium Mathematicae},
     volume = {67},
     year = {1994},
     pages = {99-108},
     zbl = {0815.32013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv67i1p99bwm}
}
Hu, Zhangjian. Equivalent characterizations of Bloch functions. Colloquium Mathematicae, Tome 67 (1994) pp. 99-108. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv67i1p99bwm/

[000] [1] S. Axler, The Bergman space, the Bloch space and commutators of multiplication operators, Duke Math. J. 53 (1986), 315-332. | Zbl 0633.47014

[001] [2] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1-65. | Zbl 0289.32012

[002] [3] S. G. Krantz, Function Theory of Several Complex Variables, Wiley, New York, 1982. | Zbl 0471.32008

[003] [4] S. G. Krantz and D. Ma, The Bloch functions on strongly pseudoconvex domains, Indiana Univ. Math. J. 37 (1988), 145-165. | Zbl 0628.32006

[004] [5] H. Li, BMO, VMO and Hankel operators on the Bergman space of strongly pseudoconvex domains, J. Funct. Anal. 106 (1992), 375-408.

[005] [6] H. Li, Hankel operators on the Bergman space of strongly pseudoconvex domains, preprint. | Zbl 0817.47037

[006] [7] W. Rudin, Function Theory in the Unit Ball of n, Springer, New York, 1980.

[007] [8] E. M. Stein, Boundary Behavior of Holomorphic Functions of Several Complex Variables, Princeton University Press, Princeton, N.J., 1972. | Zbl 0242.32005

[008] [9] K. Stroethoff, Besov-type characterisations for the Bloch space, Bull. Austral. Math. Soc. 39 (1989), 405-420. | Zbl 0661.30040

[009] [10] J. Zhang, Some characterizations of Bloch functions on strongly pseudoconvex domains, Colloq. Math. 63 (1992), 219-232. | Zbl 0761.32005