Let be the left convolution operators on with support included in F and denote those which are norm limits of convolution by bounded measures in M(F). Conditions on F are given which insure that , and are as big as they can be, namely have as a quotient, where the ergodic space W contains, and at times is very big relative to . Other subspaces of are considered. These improve results of Cowling and Fournier, Price and Edwards, Lust-Piquard, and others.
@article{bwmeta1.element.bwnjournal-article-cmv67i1p33bwm, author = {Edmond Granirer}, title = {On convolution operators with small support which are far from being convolution by a bounded measure}, journal = {Colloquium Mathematicae}, volume = {67}, year = {1994}, pages = {33-60}, zbl = {0841.43008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv67i1p33bwm} }
Granirer, Edmond. On convolution operators with small support which are far from being convolution by a bounded measure. Colloquium Mathematicae, Tome 67 (1994) pp. 33-60. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv67i1p33bwm/
[000] [BL] Y. Benyamini and P. K. Lin, Norm one multipliers on , Ark. Mat. 24 (1986), 159-173.
[001] [BE] B. Brainerd and R. E. Edwards, Linear operators which commute with translations. Part I: Representation theorems, J. Austral. Math. Soc. 6 (1966), 289-327. | Zbl 0154.39202
[002] [Ch1] C. Chou, Weakly almost periodic functions and Fourier-Stieltjes algebras of locally compact groups, Trans. Amer. Math. Soc. 274 (1982), 141-157. | Zbl 0505.43004
[003] [Ch2] C. Chou, Topological invariant means on the von Neumann algebra VN(G), ibid. 273 (1982), 207-229. | Zbl 0507.22007
[004] [Co] H. S. Collins, Strict, weighted, and mixed topologies and applications, Adv. in Math. 19 (1976), 207-237. | Zbl 0347.46023
[005] [Cow] M. Cowling, An application of Littlewood-Paley theory in harmonic analysis, Math. Ann. 241 (1979), 83-96. | Zbl 0399.43004
[006] [CF] M. Cowling and J. J. F. Fournier, Inclusions and noninclusion of spaces of convolution operators, Trans. Amer. Math. Soc. 221 (1976), 56-95. | Zbl 0331.43007
[007] [De1] J. Delaporte, Convoluteurs continus et topologie stricte, thèse, Université Lausanne, 1989.
[008] [De2] J. Delaporte, Convoluteurs continus et groupes quotients, C. R. Math. Rep. Acad. Sci. Canada 14 (1992), 167-172.
[009] [Der] A. Derighetti, A propos des convoluteurs d'un groupe quotient, Bull. Sci. Math. 107 (1983), 3-23. | Zbl 0522.43003
[010] [DU] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.
[011] [Do] Y. Domar, Harmonic analysis based on certain commutative Banach algebras, Acta Math. 96 (1956), 1-66. | Zbl 0071.11302
[012] [DR1] C. F. Dunkl and D. E. Ramirez, multipliers on compact groups, preprint.
[013] [DR2] C. F. Dunkl and D. E. Ramirez, -algebras generated by Fourier-Stieltjes transforms, Trans. Amer. Math. Soc. 164 (1972), 435-441. | Zbl 0211.15903
[014] [EP] R. E. Edwards and J. F. Price, A naively constructive approach to boundedness principles with applications to harmonic analysis, Enseign. Math. 16 (1970), 255-296. | Zbl 0208.15503
[015] [Ey] P. Eymard, Algèbres et convoluteurs de , Séminaire Bourbaki, 22e année, 1969/70, no. 367.
[016] [Fe] G. Fendler, An -version of a theorem of D. A. Raikov, Ann. Inst. Fourier (Grenoble) 35 (1) (1985), 125-135.
[017] [FG] A. Figà-Talamanca and G. I. Gaudry, Multipliers and sets of uniqueness of , Michigan Math. J. 17 (1970), 179-191. | Zbl 0197.40103
[018] [GI] G. I. Gaudry and I. R. Inglis, Approximation of multipliers, Proc. Amer. Math. Soc. 44 (1974), 381-384. | Zbl 0287.42007
[019] [GMc] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, New York, 1979. | Zbl 0439.43001
[020] [Gr1] E. E. Granirer, On some spaces of linear functionals on the algebras for locally compact groups, Colloq. Math. 52 (1987), 119-132. | Zbl 0649.43004
[021] [Gr2] E. E. Granirer, Geometric and topological properties of certain compact convex subsets of double duals of Banach spaces, which arise from the study of invariant means, Illinois J. Math. 30 (1986), 148-174. | Zbl 0606.46006
[022] [Gr3] E. E. Granirer, On Baire measures on D-topological spaces, Fund. Math. 60 (1967), 1-22. | Zbl 0146.12204
[023] [Gr4] E. E. Granirer, On convolution operators which are far from being convolution by a bounded measure. Expository memoir, C. R. Math. Rep. Acad. Sci. Canada 13 (1991), 187-204. | Zbl 0791.43003
[024] [Ha] R. Haydon, A non-reflexive Grothendieck space that does not contain , Israel J. Math. 40 (1981), 65-73.
[025] [Hz1] C. Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (3) (1973), 91-123. | Zbl 0257.43007
[026] [Hz2] C. Herz, Une généralisation de la notion de transformée de Fourier-Stieltjes, ibid. 24 (3) (1974), 145-157. | Zbl 0287.43006
[027] [Hz3] C. Herz, The theory of p-spaces with an application to convolution operators, Trans. Amer. Math. Soc. 154 (1971), 69-82. | Zbl 0216.15606
[028] [HR] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vols. I, II, Springer, 1970.
[029] [Ka1] J.-P. Kahane et R. Salem, Sur les ensembles linéaires ne portant pas de pseudomesures, C. R. Acad. Sci. Paris 243 (1956), 1185-1187.
[030] [Ka2] J.-P. Kahane, Sur les réarrangements de fonctions de la classe A, Studia Math. 31 (1968), 287-293. | Zbl 0177.42202
[031] [Ka3] J.-P. Kahane, Séries de Fourier Absolument Convergentes, Springer, 1970. | Zbl 0195.07602
[032] [Ko] T. W. Körner, A pseudofunction on a Helson set. I, Astérisque 5 (1973), 3-224. | Zbl 0281.43004
[033] [La] R. Larsen, An Introduction to the Theory of Multipliers, Springer, 1971.
[034] [LT] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Vol. I, Springer, 1977. | Zbl 0362.46013
[035] [LR] T. S. Liu and A. van Rooij, Invariant means on a locally compact group, Monatsh. Math. 78 (1974), 356-359.
[036] [Lo] L. H. Loomis, The spectral characterization of a class of almost periodic functions, Ann. of Math. 72 (1960), 362-368. | Zbl 0094.05801
[037] [P1] F. Lust-Piquard, Produits tensoriels projectifs d'espaces de Banach faiblement sequentiellement complets, Colloq. Math. 36 (1976), 255-267. | Zbl 0356.46058
[038] [P2] F. Lust-Piquard, Means on -subspaces of with RNP and Schur property, Ann. Inst. Fourier (Grenoble) 39 (1989), 969-1006. | Zbl 0675.43001
[039] [P3] F. Lust-Piquard, Eléments ergodiques et totalement ergodiques dans , Studia Math. 69 (1981), 191-225. | Zbl 0476.43001
[040] [Mc] O. C. McGehee, Helson sets in , in: Conference on Harmonic Analysis, College Park, Maryland, 1971, Lecture Notes in Math. 266, Springer, 1972, 229-237.
[041] [Me] Y. Meyer, Recent advances in spectral synthesis, ibid., 239-253.
[042] [Ne] C. Nebbia, Convolution operators on the group of isometries of a homogeneous tree, Boll. Un. Mat. Ital. C (6) 2 (1983), 277-292. | Zbl 0544.43003
[043] [Pa] A. L. T. Paterson, Amenability, Math. Surveys Monographs 29, Amer. Math. Soc., 1988.
[044] [Pi] J. P. Pier, Amenable Locally Compact Groups, Wiley, 1984. | Zbl 0597.43001
[045] [Pr] J. F. Price, Some strict inclusions between spaces of -multipliers, Trans. Amer. Math. Soc. 152 (1970), 321-330. | Zbl 0216.14802
[046] [Ro] H. P. Rosenthal, Some recent discoveries in the isomorphic theory of Banach spaces, Bull. Amer. Math. Soc. 84 (1978), 803-831. | Zbl 0391.46016
[047] [Ru1] W. Rudin, Fourier Analysis on Groups, Wiley, 1960.
[048] [Ru2] W. Rudin, Functional Analysis, McGraw-Hill, 1973.
[049] [Sa] E. Saab, Some characterizations of weak Radon-Nikodym sets, Proc. Amer. Math. Soc. 86 (1982), 307-311. | Zbl 0494.46047
[050] [S] S. Saeki, Helson sets which disobey spectral synthesis, ibid. 47 (1975), 371-377. | Zbl 0297.43007
[051] [St] E. Stein, On limits of sequences of operators, Ann. of Math. 74 (1961), 140-170. | Zbl 0103.08903
[052] [T] M. Talagrand, Un nouveau C(K) qui possède la propriété de Grothendieck, Israel J. Math. 37 (1980), 181-191.
[053] [Wo1] G. S. Woodward, Une classe d'ensembles épars, C. R. Acad. Sci. Paris 274 (1972), 221-223. | Zbl 0228.43009
[054] [Wo2] G. S. Woodward, Invariant means and ergodic sets in Fourier analysis, Pacific J. Math. 54 (1974), 281-299. | Zbl 0307.43006
[055] [Wo3] G. S. Woodward, The generalized almost periodic part of an ergodic function, Studia Math. 50 (1974), 103-116. | Zbl 0283.42019