@article{bwmeta1.element.bwnjournal-article-cmv67i1p1bwm, author = {S. Okada and S. Ricker}, title = {Compactness properties of vector-valued integration maps in locally convex spaces}, journal = {Colloquium Mathematicae}, volume = {67}, year = {1994}, pages = {1-14}, zbl = {0821.46057}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv67i1p1bwm} }
Okada, S.; Ricker, S. Compactness properties of vector-valued integration maps in locally convex spaces. Colloquium Mathematicae, Tome 67 (1994) pp. 1-14. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv67i1p1bwm/
[000] [1] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Academic Press, New York, 1985.
[001] [2] W. J. Davis, T. Figiel, W. B. Johnson and A. Pełczyński, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327. | Zbl 0306.46020
[002] [3] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, 1977.
[003] [4] J. Diestel and J. J. Uhl, Progress in vector measures -- 1977-83, in: Measure Theory and its Applications (Proc. Conf. Sherbrooke, Canada, 1982), Lecture Notes in Math. 1033, Springer, Berlin, 1983, 144-192.
[004] [5] P. G. Dodds and W. J. Ricker, Spectral measures and the Bade reflexivity theorem, J. Funct. Anal. 61 (1985), 136-163. | Zbl 0577.46043
[005] [6] N. Dunford and J. T. Schwartz, Linear Operators, Part III: Spectral Operators, Wiley-Interscience, New York, 1972. | Zbl 0128.34803
[006] [7] I. Kluvánek, Applications of vector measures, in: Contemp. Math. 2, Amer. Math. Soc., 1980, 101-134. | Zbl 0587.28005
[007] [8] I. Kluvánek and G. Knowles, Vector Measures and Control Systems, NorthHolland, Amsterdam, 1976. | Zbl 0316.46043
[008] [9] G. Köthe, Topological Vector Spaces I, Springer, Berlin, 1969. | Zbl 0179.17001
[009] [10] D. R. Lewis, Integration with respect to vector measures, Pacific J. Math. 33 (1970), 157-165. | Zbl 0195.14303
[010] [11] S. Okada and W. Ricker, Compactness properties of the integration map associated with a vector measure, Colloq. Math. 66 (1994), 175-185. | Zbl 0884.28008
[011] [12] H. H. Schaefer, Topological Vector Spaces, Springer, New York, 1970.
[012] [13] E. Thomas, The Lebesgue-Nikodym theorem for vector-valued Radon measures, Mem. Amer. Math. Soc. 139 (1974).