The support of a function with thin spectrum
Hare, Kathryn
Colloquium Mathematicae, Tome 67 (1994), p. 147-154 / Harvested from The Polish Digital Mathematics Library

We prove that if EĜ does not contain parallelepipeds of arbitrarily large dimension then for any open, non-empty SG there exists a constant c > 0 such that f1S2cf2 for all fL2(G) whose Fourier transform is supported on E. In particular, such functions cannot vanish on any open, non-empty subset of G. Examples of sets which do not contain parallelepipeds of arbitrarily large dimension include all Λ(p) sets.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:210257
@article{bwmeta1.element.bwnjournal-article-cmv67i1p147bwm,
     author = {Kathryn Hare},
     title = {The support of a function with thin spectrum},
     journal = {Colloquium Mathematicae},
     volume = {67},
     year = {1994},
     pages = {147-154},
     zbl = {0835.43004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv67i1p147bwm}
}
Hare, Kathryn. The support of a function with thin spectrum. Colloquium Mathematicae, Tome 67 (1994) pp. 147-154. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv67i1p147bwm/

[000] [1] A. Bonami, Etude des coefficients de Fourier des fonctions de Lp(G), Ann. Inst. Fourier (Grenoble) 20 (2) (1970), 335-402. | Zbl 0195.42501

[001] [2] J. Fournier, Uniformizable Λ(2) sets and uniform integrability, Colloq. Math. 51 (1987), 119-129. | Zbl 0663.42014

[002] [3] K. Hare, Strict-2-associatedness for thin sets, ibid. 56 (1988), 367-381. | Zbl 0725.43008

[003] [4] K. Hare, Arithmetic properties of thin sets, Pacific J. Math. 131 (1988), 143-155. | Zbl 0603.43003

[004] [5] B. Host et F. Parreau, Sur les mesures dont la transformée de Fourier-Stieltjes ne tend pas vers 0 à l'infini, Colloq. Math. 41 (1979), 285-289. | Zbl 0466.43005

[005] [6] G. W. Johnson and G. S. Woodward, On p-Sidon sets, Indiana Univ. Math. J. 24 (1974), 161-167. | Zbl 0285.43006

[006] [7] I. Klemes, Seminar notes on the transforms of some singular measures, private communication, 1990.

[007] [8] N. Levinson, Gap and Density Theorems, Amer. Math. Soc. Colloq. Publ. 26, Amer. Math. Soc., Providence, R.I., 1940.

[008] [9] J. Lopez and K. Ross, Sidon Sets, Lecture Notes in Pure and Appl. Math. 13, Marcel Dekker, New York, 1975.

[009] [10] S. Mandelbrojt, Séries de Fourier et classes quasi-analytiques de fonctions, Gauthier-Villars, Paris, 1935. | Zbl 0013.11006

[010] [11] I. Miheev, On lacunary series, Math. USSR-Sb. 27 (1975), 481-502; translated from Mat. Sb. 98 (140) (1975), 538-563. | Zbl 0371.42006

[011] [12] I. Miheev, Trigonometric series with gaps, Anal. Math. 9 (1983), 43-55. | Zbl 0544.10062

[012] [13] W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-227. | Zbl 0091.05802

[013] [14] A. Zygmund, Trigonometric Series, Vol. I, Cambridge University Press, Cambridge, 1959. | Zbl 0085.05601