The Fatou theorem for NA groups - a negative result
Sołowiej, Jarosław
Colloquium Mathematicae, Tome 67 (1994), p. 131-145 / Harvested from The Polish Digital Mathematics Library
Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:210256
@article{bwmeta1.element.bwnjournal-article-cmv67i1p131bwm,
     author = {Jaros\l aw So\l owiej},
     title = {The Fatou theorem for NA groups - a negative result},
     journal = {Colloquium Mathematicae},
     volume = {67},
     year = {1994},
     pages = {131-145},
     zbl = {0839.22009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv67i1p131bwm}
}
Sołowiej, Jarosław. The Fatou theorem for NA groups - a negative result. Colloquium Mathematicae, Tome 67 (1994) pp. 131-145. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv67i1p131bwm/

[000] [Br] L. R. Bragg, Hypergeometric operator series and related partial differential equations, Trans. Amer. Math. Soc. 143 (1969), 319-336. | Zbl 0195.10803

[001] [D] E. Damek, Left-invariant degenerate elliptic operators on semidirect extensions of homogeneous groups, Studia Math. 89 (1988), 169-196. | Zbl 0675.22005

[002] [DH1] E. Damek and A. Hulanicki, Boundaries for left-invariant subelliptic operators on semidirect products of nilpotent and abelian groups, J. Reine Angew. Math. 411 (1990), 1-38. | Zbl 0699.22012

[003] [DH2] E. Damek and A. Hulanicki, Maximal functions related to subelliptic operators invariant under an action of a solvable Lie group, Studia Math. 101 (1991), 34-68. | Zbl 0811.43001

[004] [DH3] E. Damek and A. Hulanicki, Boundaries and the Fatou theorem for subelliptic second order operators on solvable Lie groups, ibid., to appear. | Zbl 0839.22008

[005] [FS] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, 1982. | Zbl 0508.42025

[006] [G] M. de Guzmán, Differentiation of Integrals in Rn, Lecture Notes in Math. 481, Springer, 1975. | Zbl 0327.26010

[007] [H1] A. Hulanicki, Subalgebra of L1(G) associated with laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287. | Zbl 0316.43005

[008] [H2] A. Hulanicki, A class of convolution semi-groups of measures on a Lie group, in: Lecture Notes in Math. 828, Springer, 1980, 82-101.

[009] [Sch] I. J. Schoenberg, On the Besicovitch-Perron solution of the Kakeya problem, in: Studies in Mathematical Analysis and Related Topics, G. Szegö et al. (eds.), Stanford Univ. Press, 1962, 359-363.

[010] [SW] E. M. Stein and N. J. Weiss, On the convergence of Poisson integrals, Trans. Amer. Math. Soc. 140 (1969), 35-54. | Zbl 0182.10801