On ergodic singular integral operators
Alphonse, A. ; Madan, Shobha
Colloquium Mathematicae, Tome 66 (1993), p. 299-307 / Harvested from The Polish Digital Mathematics Library
Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:210250
@article{bwmeta1.element.bwnjournal-article-cmv66i2p299bwm,
     author = {A. Alphonse and Shobha Madan},
     title = {On ergodic singular integral operators},
     journal = {Colloquium Mathematicae},
     volume = {66},
     year = {1993},
     pages = {299-307},
     zbl = {0822.42011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv66i2p299bwm}
}
Alphonse, A.; Madan, Shobha. On ergodic singular integral operators. Colloquium Mathematicae, Tome 66 (1993) pp. 299-307. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv66i2p299bwm/

[000] [1] E. Berkson, T. A. Gillespie and P. S. Muhly, Abstract spectral decompositions guaranteed by the Hilbert transform, Proc. London Math. Soc. (3) 53 (1986), 489-517. | Zbl 0609.47042

[001] [2] J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat. 21 (1983), 163-168. | Zbl 0533.46008

[002] [3] J. Bourgain, Extension of a result of Benedek, Calderón and Panzone, ibid. 22 (1984), 91-95. | Zbl 0548.46022

[003] [4] D. L. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, in: Conf. on Harmonic Analysis in Honor of A. Zygmund (Chicago, Ill., 1981), Wadsworth, Belmont, Calif., 1983, 270-286.

[004] [5] D. L. Burkholder, A geometric characterization of UMD Banach spaces, Ann. Probab. 9 (1981), 997-1011. | Zbl 0474.60036

[005] [6] A. P. Calderón, Ergodic theory and translation invariant operators, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 349-353. | Zbl 0185.21806

[006] [7] R. R. Coifman and G. Weiss, Transference Methods in Analysis, CBMS Regional Conf. Ser. in Math. 31, Amer. Math. Soc., 1977.

[007] [8] M. Cotlar, A unified theory of Hilbert transform and ergodic theorems, Rev. Mat. Cuyana 1 (1955), 105-167.

[008] [9] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.

[009] [10] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Springer, 1977.

[010] [11] K. Petersen, Another proof of the existence of the ergodic Hilbert transform, Proc. Amer. Math. Soc. 88 (1983), 39-43. | Zbl 0521.28014

[011] [12] J. L. Rubio de Francia, F. J. Ruiz and J. L. Torrea, Calderón-Zygmund theory of operator-valued kernels, Adv. in Math. 62 (1986), 7-48. | Zbl 0627.42008

[012] [13] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. | Zbl 0207.13501

[013] [14] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, 1986. | Zbl 0621.42001