@article{bwmeta1.element.bwnjournal-article-cmv66i2p283bwm, author = {Jacek Pomyka\l a}, title = {Cubic norms represented by quadratic sequences}, journal = {Colloquium Mathematicae}, volume = {66}, year = {1993}, pages = {283-297}, zbl = {0814.11044}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv66i2p283bwm} }
Pomykała, Jacek. Cubic norms represented by quadratic sequences. Colloquium Mathematicae, Tome 66 (1993) pp. 283-297. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv66i2p283bwm/
[000] [1] E. Bombieri, J. B. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli. II, Math. Ann. 277 (1987), 361-393. | Zbl 0625.10036
[001] [2] J. M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Invent. Math. 70 (1982), 219-288.
[002] [3] J. Friedlander and H. Iwaniec, Quadratic polynomials and quadratic forms, Acta Math. 141 (1978), 1-15. | Zbl 0393.10049
[003] [4] H. Iwaniec, On sums of two norm from cubic fields, in: Journées de théorie additive des nombres, Univ. de Bordeaux I, 1977, 71-89.
[004] [5] H. Iwaniec, Rosser's sieve, Acta Arith. 36 (1980), 171-202.
[005] [6] H. Iwaniec, On the greatest prime factor of , Ann. Inst. Fourier (Grenoble) 32 (4) (1982), 1-11. | Zbl 0489.10038
[006] [7] H. Iwaniec and J. Pomykała, Sums and differences of quartic norms, Mathematika, to appear.
[007] [8] J. Pomykała, On the greatest prime divisor of quadratic sequences, Sém. Théorie des Nombres Bordeaux 3 (1991), 361-375. | Zbl 0762.11030
[008] [9] H. J. S. Smith, Report on the theory of numbers, Part III, Report of the British Association for 1861, 292-340; reprinted in: The Collected Mathematical Papers of Henry John Stephen Smith, Vol. I, Chelsea, 1965, 163-228.