A remark on multiresolution analysis of Lp(d)
Sun, Qiyu
Colloquium Mathematicae, Tome 66 (1993), p. 257-264 / Harvested from The Polish Digital Mathematics Library

A condition on a scaling function which generates a multiresolution analysis of Lp(d) is given.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:210247
@article{bwmeta1.element.bwnjournal-article-cmv66i2p257bwm,
     author = {Sun, Qiyu},
     title = {A remark on multiresolution analysis of $L^{p}($\mathbb{R}$^{d})$
            },
     journal = {Colloquium Mathematicae},
     volume = {66},
     year = {1993},
     pages = {257-264},
     zbl = {0823.42018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv66i2p257bwm}
}
Sun, Qiyu. A remark on multiresolution analysis of $L^{p}(ℝ^{d})$
            . Colloquium Mathematicae, Tome 66 (1993) pp. 257-264. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv66i2p257bwm/

[000] [1] R.-Q. Jia and C. A. Micchelli, Using the refinement equations for the construction of prewavelet II: power of two, in: Curves and Surfaces, P. J. Laurent, A. Le Mehaute and L. L. Schumaker (eds.), Academic Press, 1990, 1-36.

[001] [2] W. R. Madych, Some elementary properties of multiresolution analysis of L2(Rn), in: Wavelets-A Tutorial in Theory and Applications, C. K. Chui (ed.), Academic Press, 1992, 259-294. | Zbl 0760.41030

[002] [3] S. Mallat, Multiresolution approximation and wavelet orthonormal bases of L2(Rn), Trans. Amer. Math. Soc. 315 (1989), 69-88.

[003] [4] Y. Meyer, Ondelettes, fonctions spline et analyses graduées, Rapport CEREMADE 8703, 1987. | Zbl 0714.42022

[004] [5] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. | Zbl 0207.13501

[005] [6] Q. Sun, Sequences spaces and stability of integer translates, Z. Anal. Anwendungen 12 (1993), 567-584. | Zbl 0801.46006