Indépendance linéaire et classification topologique des espaces normés
Cauty, Robert
Colloquium Mathematicae, Tome 66 (1993), p. 243-255 / Harvested from The Polish Digital Mathematics Library
Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:210246
@article{bwmeta1.element.bwnjournal-article-cmv66i2p243bwm,
     author = {Robert Cauty},
     title = {Ind\'ependance lin\'eaire et classification topologique des espaces norm\'es},
     journal = {Colloquium Mathematicae},
     volume = {66},
     year = {1993},
     pages = {243-255},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv66i2p243bwm}
}
Cauty, Robert. Indépendance linéaire et classification topologique des espaces normés. Colloquium Mathematicae, Tome 66 (1993) pp. 243-255. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv66i2p243bwm/

[000] [1] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, PWN, Warszawa, 1975. | Zbl 0304.57001

[001] [2] M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite dimensional absolute retracts, Michigan Math. J. 33 (1986), 291-313. | Zbl 0629.54011

[002] [3] R. Cauty, Caractérisation topologique de l'espace des fonctions dérivables, Fund. Math. 138 (1991), 35-58. | Zbl 0770.54015

[003] [4] R. Cauty, Ensembles absorbants pour les classes projectives, ibid., à paraître.

[004] [5] R. Cauty, Une famille d'espaces préhilbertiens σ-compacts ayant la puissance du continu, Bull. Polish Acad. Sci. 40 (1992), 41-43.

[005] [6] R. Cauty and T. Dobrowolski, Applying coordinate products to the topological identification of normed spaces, Trans. Amer. Math. Soc. 337 (1993), 625-649. | Zbl 0820.57015

[006] [7] D. Curtis, T. Dobrowolski and J. Mogilski, Some applications of the topological characterization of the sigma-compact spaces lf2 and Σ, ibid. 284 (1984), 837-846. | Zbl 0563.54023

[007] [8] T. Dobrowolski and J. Mogilski, Absorbing sets in the Hilbert cube related to transfinite dimension, Bull. Polish Acad. Sci. 38 (1990), 185-188. | Zbl 0782.57012

[008] [9] T. Dobrowolski and J. Mogilski, Problems on topological classification of incomplete metric spaces, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, Amsterdam, 1990, 409-429.

[009] [10] D. W. Henderson, Z-sets in ANR's, Trans. Amer. Math. Soc. 213 (1975), 205-216. | Zbl 0315.57004

[010] [11] S. T. Hu, Theory of Retracts, Wayne State University Press, Detroit, 1965. | Zbl 0145.43003

[011] [12] C. Kuratowski, Topologie I, 4ème édition, PWN, Warszawa, 1958.

[012] [13] W. Marciszewski, A pre-Hilbert space without any continuous maps onto its own square, Bull. Polish Acad. Sci. 31 (1983), 393-396. | Zbl 0548.46003

[013] [14] J. van Mill, Domain invariance in infinite-dimensional linear spaces, Proc. Amer. Math. Soc. 101 (1987), 173-180. | Zbl 0627.57016

[014] [15] R. Pol, An infinite-dimensional pre-Hilbert space not homeomorphic to its own square, ibid. 90 (1984), 450-454. | Zbl 0528.54032

[015] [16] J. R. Steel, Analytic sets and Borel isomorphisms, Fund. Math. 108 (1980), 83-88. | Zbl 0463.03028

[016] [17] H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of l2-manifolds, ibid. 101 (1978), 93-110. | Zbl 0406.55003