@article{bwmeta1.element.bwnjournal-article-cmv66i1p63bwm, author = {A. Iwanik and J. Serafin}, title = {Most monothetic extensions are rank-1}, journal = {Colloquium Mathematicae}, volume = {66}, year = {1993}, pages = {63-76}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv66i1p63bwm} }
Iwanik, A.; Serafin, J. Most monothetic extensions are rank-1. Colloquium Mathematicae, Tome 66 (1993) pp. 63-76. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv66i1p63bwm/
[00000] [A] H. Anzai, Ergodic skew product transformations on the torus, Osaka Math. J. 3 (1951), 83-99.
[00001] [B] L. Baggett, On functions that are trivial cocycles for a set of irrationals, Proc. Amer. Math. Soc. 104 (1988), 1212-1217.
[00002] [Ba] J. R. Baxter, A class of ergodic transformations having simple spectrum, ibid. 27 (1971), 275-279.
[00003] P. Gabriel, M. Lemańczyk et P. Liardet, Ensemble d'invariants pour les produits croisés de Anzai, Suppl. Bull. Soc. Math. France 119 (3) (1991), Mém. 47.
[00004] [J-P] R. Jones and W. Parry, Compact abelian group extensions of dynamical systems II, Compositio Math. 25 (1972), 135-147.
[00005] [J] A. del Junco, Transformations with discrete spectrum are stacking transformations, Canad. J. Math. 28 (1976), 836-839.
[00006] [K-S] A. B. Katok and A. M. Stepin, Approximations in ergodic theory, Uspekhi Mat. Nauk 22 (1967), 81-106 (in Russian); English transl.: Russian Math. Surveys 22 (1967), 77-102.
[00007] [P] B. J. Pettis, On continuity and openness of homomorphisms in topological groups, Ann. of Math. 52 (1950), 293-308.
[00008] [R1] E. A. Robinson, Ergodic measure preserving transformations with arbitrary finite spectral multiplicities, Invent. Math. 72 (1983), 299-314.
[00009] [R2] E. A. Robinson, Non-abelian extensions have nonsimple spectrum, Compositio Math. 65 (1988), 155-170.
[00010] [Ru] D. J. Rudolph, and cocycle extensions and complementary algebras, Ergodic Theory Dynamical Systems 6 (1986), 583-599.