The product of a function and a Boehmian
Nemzer, Dennis
Colloquium Mathematicae, Tome 66 (1993), p. 49-55 / Harvested from The Polish Digital Mathematics Library

Let A be the class of all real-analytic functions and β the class of all Boehmians. We show that there is no continuous operation on β which is ordinary multiplication when restricted to A.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:210233
@article{bwmeta1.element.bwnjournal-article-cmv66i1p49bwm,
     author = {Dennis Nemzer},
     title = {The product of a function and a Boehmian},
     journal = {Colloquium Mathematicae},
     volume = {66},
     year = {1993},
     pages = {49-55},
     zbl = {0815.44003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv66i1p49bwm}
}
Nemzer, Dennis. The product of a function and a Boehmian. Colloquium Mathematicae, Tome 66 (1993) pp. 49-55. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv66i1p49bwm/

[000] [1] N. K. Bary, A Treatise on Trigonometric Series, Pergamon Press, New York, 1964. | Zbl 0129.28002

[001] [2] I. M. Gelfand and G. E. Shilov, Generalized Functions, Vol. 2, Academic Press, New York, 1968.

[002] [3] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer, Berlin, 1983. | Zbl 0521.35001

[003] [4] L. L. Littlejohn and R. P. Kanwal, Distributional solutions of the hypergeometric differential equation, J. Math. Anal. Appl. 122 (1987), 325-345. | Zbl 0629.34006

[004] [5] J. Mikusiński, Operational Calculus, Pergamon Press, Oxford, 1959. | Zbl 0088.33002

[005] [6] P. Mikusiński, Convergence of Boehmians, Japan. J. Math. 9 (1983), 159-179. | Zbl 0524.44005

[006] [7] P. Mikusiński, Boehmians and generalized functions, Acta Math. Hungar. 51 (1988), 271-281. | Zbl 0652.44005

[007] [8] P. Mikusiński, On harmonic Boehmians, Proc. Amer. Math. Soc. 106 (1989), 447-449.

[008] [9] D. Nemzer, Periodic Boehmians II, Bull. Austral. Math. Soc. 44 (1991), 271-278. | Zbl 0744.46022

[009] [10] D. Nemzer, The Laplace transform on a class of Boehmians, ibid. 46 (1992), 347-352.

[010] [11] L. Schwartz, Théorie des distributions, Hermann, Paris, 1966.

[011] [12] S. M. Shah and J. Wiener, Distributional and entire solutions of ordinary differential and functional differential equations, Internat. J. Math. and Math. Sci. 6 (1983), 243-270. | Zbl 0532.34006

[012] [13] J. Wiener, Generalized-function solutions of differential and functional differential equations, J. Math. Anal. Appl. 88 (1982), 170-182. | Zbl 0489.34080