In this paper we raise the question of regularity of the densities of a symmetric stable semigroup of measures on the homogeneous group N under the mere assumption that the densities exist. (For a criterion of the existence of the densities of such semigroups see [11].)
@article{bwmeta1.element.bwnjournal-article-cmv66i1p29bwm, author = {Pawe\l\ G\l owacki}, title = {Lipschitz continuity of densities of stable semigroups of measures}, journal = {Colloquium Mathematicae}, volume = {66}, year = {1993}, pages = {29-47}, zbl = {0837.43009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv66i1p29bwm} }
Głowacki, Paweł. Lipschitz continuity of densities of stable semigroups of measures. Colloquium Mathematicae, Tome 66 (1993) pp. 29-47. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv66i1p29bwm/
[000] [1] A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289-309. | Zbl 0072.11501
[001] [2] M. Christ, Hilbert transforms along curves. I. Nilpotent groups, Ann. of Math. 122 (1985), 575-596. | Zbl 0593.43011
[002] [3] L. Corwin and F. P. Greenleaf, Representations of Nilpotent Lie Groups and Their Applications. Part 1: Basic Theory and Examples, Cambridge University Press, Cambridge, 1990. | Zbl 0704.22007
[003] [4] M. Duflo, Représentations de semi-groupes de mesures sur un groupe localement compact, Ann. Inst. Fourier (Grenoble) 28 (3) (1978), 225-249. | Zbl 0368.22006
[004] [5] J. Dziubański and J. Zienkiewicz, Smoothness of densities of semigroups of measures on homogeneous groups, Colloq. Math., to appear. | Zbl 0838.43010
[005] [6] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207. | Zbl 0312.35026
[006] [7] G. B. Folland, Lipschitz classes and Poisson integrals on stratified groups, Studia Math. 66 (1979), 37-55. | Zbl 0439.43005
[007] [8] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton University Press, Princeton, 1982. | Zbl 0508.42025
[008] [9] P. Głowacki, Stable semigroups of measures on the Heisenberg group, Studia Math. 79 (1984), 105-138. | Zbl 0563.43002
[009] [10] P. Głowacki, Stable semi-groups of measures as commutative approximate identities on non- graded homogeneous groups, Invent. Math. 83 (1986), 557-582. | Zbl 0595.43006
[010] [11] P. Głowacki, The Rockland condition for nondifferential convolution operators, Duke Math. J. 58 (1989), 371-395. | Zbl 0678.43002
[011] [12] P. Głowacki and W. Hebisch, Pointwise estimates for the densities of stable semigroups of measures, Studia Math. 104 (1993), 243-258. | Zbl 0812.43005
[012] [13] P. Głowacki and A. Hulanicki, A semi-group of probability measures with non- smooth differentiable densities on a Lie group, Colloq. Math. 51 (1987), 131-139. | Zbl 0629.43001
[013] [14] B. Helffer et J. Nourrigat, Caractérisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe gradué, Comm. Partial Differential Equations 4 (8) (1979), 899-958. | Zbl 0423.35040
[014] [15] A. Hulanicki, A class of convolution semi-groups of measures on a Lie group, in: Lecture Notes in Math. 828, Springer, 1980, 82-101. | Zbl 0462.28009
[015] [16] G. Hunt, Semigroups of measures on Lie groups, Trans. Amer. Math. Soc. 81 (1956), 264-293. | Zbl 0073.12402
[016] [17] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.
[017] [18] E. M. Stein, Boundary behavior of harmonic functions on symmetric spaces: maximal estimates for Poisson integrals, Invent. Math. 74 (1983), 63-83. | Zbl 0522.43007
[018] [19] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, 1975. | Zbl 0232.42007
[019] [20] K. Yosida, Functional Analysis, Springer, Berlin, 1980.
[020] [21] F. Zo, A note on approximation of the identity, Studia Math. 55 (1976), 111-122. | Zbl 0326.44005