A class of nonlocal parabolic problems occurring in statistical mechanics
Biler, Piotr ; Nadzieja, Tadeusz
Colloquium Mathematicae, Tome 66 (1993), p. 131-145 / Harvested from The Polish Digital Mathematics Library

We consider parabolic equations with nonlocal coefficients obtained from the Vlasov-Fokker-Planck equations with potentials. This class of equations includes the classical Debye system from electrochemistry as well as an evolution model of self-attracting clusters under friction and fluctuations. The local in time existence of solutions to these equations (with no-flux boundary conditions) and properties of stationary solutions are studied.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:210226
@article{bwmeta1.element.bwnjournal-article-cmv66i1p131bwm,
     author = {Piotr Biler and Tadeusz Nadzieja},
     title = {A class of nonlocal parabolic problems occurring in statistical mechanics},
     journal = {Colloquium Mathematicae},
     volume = {66},
     year = {1993},
     pages = {131-145},
     zbl = {0818.35046},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv66i1p131bwm}
}
Biler, Piotr; Nadzieja, Tadeusz. A class of nonlocal parabolic problems occurring in statistical mechanics. Colloquium Mathematicae, Tome 66 (1993) pp. 131-145. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv66i1p131bwm/

[000] [1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.

[001] [2] H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, preprint, 1993, 119 pp.

[002] [3] P. Biler, Existence and asymptotics of solutions for a parabolic-elliptic system with nonlinear no-flux boundary conditions, Nonlinear Anal. 19 (1992), 1121-1136. | Zbl 0781.35025

[003] [4] P. Biler, W. Hebisch and T. Nadzieja, The Debye system: existence and large time behavior of solutions, Mathematical Institute, University of Wrocław, Report no 23 (1992), 24 pp. | Zbl 0814.35054

[004] [5] P. Biler, D. Hilhorst and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, I, II, to appear. | Zbl 0832.35015

[005] [6] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Springer, Berlin, 1990. | Zbl 0683.35001

[006] [7] H. Gajewski and K. Gröger, On the basic equations for carrier transport in semiconductors, J. Math. Anal. Appl. 113 (1986), 12-35. | Zbl 0642.35038

[007] [8] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, Berlin, 1983. | Zbl 0562.35001

[008] [9] L. V. Kantorovich and G. P. Akilov, Functional Analysis, 2nd ed., Pergamon Press, Oxford, 1982. | Zbl 0484.46003

[009] [10] A. Krzywicki and T. Nadzieja, Some results concerning the Poisson-Boltzmann equation, Zastos. Mat. 21 (1991), 265-272. | Zbl 0756.35029

[010] [11] A. Krzywicki and T. Nadzieja, A nonstationary problem in the theory of electrolytes, Quart. Appl. Math. 50 (1992), 105-107. | Zbl 0754.35142

[011] [12] A. Krzywicki and T. Nadzieja, A note on the Poisson-Boltzmann equation, Zastos. Mat. 21 (1993), 591-595. | Zbl 0780.35033

[012] [13] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, 1988.

[013] [14] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1968.

[014] [15] G. Wolansky, On steady distributions of self-attracting clusters under friction and fluctuations, Arch. Rational Mech. Anal. 119 (1992), 355-391. | Zbl 0774.76069