Bounds for Chern classes of semistable vector bundles on complex projective spaces
Dobrowolska, Wiera
Colloquium Mathematicae, Tome 66 (1993), p. 277-290 / Harvested from The Polish Digital Mathematics Library

This work concerns bounds for Chern classes of holomorphic semistable and stable vector bundles on n. Non-negative polynomials in Chern classes are constructed for 4-vector bundles on 4 and a generalization of the presented method to r-bundles on n is given. At the end of this paper the construction of bundles from complete intersection is introduced to see how rough the estimates we obtain are.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:210221
@article{bwmeta1.element.bwnjournal-article-cmv65i2p277bwm,
     author = {Wiera Dobrowolska},
     title = {Bounds for Chern classes of semistable vector bundles on complex projective spaces},
     journal = {Colloquium Mathematicae},
     volume = {66},
     year = {1993},
     pages = {277-290},
     zbl = {0832.14006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv65i2p277bwm}
}
Dobrowolska, Wiera. Bounds for Chern classes of semistable vector bundles on complex projective spaces. Colloquium Mathematicae, Tome 66 (1993) pp. 277-290. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv65i2p277bwm/

[000] [1] G. Elencwajg and O. Forster, Bounding cohomology groups of vector bundles on n, Math. Ann. 246 (1980), 251-270. | Zbl 0432.14011

[001] [2] H. J. Hoppe, Generischer Spaltungstyp und zweite Chernklasse stabiler Vektorraumbündel vom Rang 4 auf 4, Math. Z. 187 (1984), 345-360. | Zbl 0567.14011

[002] [3] K. Jaczewski, M. Szurek and J. Wiśniewski, Geometry of the Tango bundle, in: Proc. Conf. Algebraic Geometry, Berlin 1985, Teubner-Texte Math. 92, Teubner, 1986, 177-185. | Zbl 0628.14015

[003] [4] M. Maruyama, The theorem of Grauert-Mülich-Spindler, Math. Ann. 255 (1981), 317-333. | Zbl 0438.14015

[004] [5] C. Okonek, M. Schneider and H. Spindler, Vector Bundles on Complex Projective Spaces, Progr. Math. 3, Birkhäuser, 1980.

[005] [6] M. Schneider, Chernklassen semi-stabiler Vektorraumbündel vom Rang 3 auf dem komplex-projektiven Raum, J. Reine Angew. Math. 315 (1980), 211-220. | Zbl 0432.14012