Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property
Bruck, Ronald ; Kuczumow, Tadeusz ; Reich, Simeon
Colloquium Mathematicae, Tome 66 (1993), p. 169-179 / Harvested from The Polish Digital Mathematics Library
Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:210212
@article{bwmeta1.element.bwnjournal-article-cmv65i2p169bwm,
     author = {Ronald Bruck and Tadeusz Kuczumow and Simeon Reich},
     title = {Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property},
     journal = {Colloquium Mathematicae},
     volume = {66},
     year = {1993},
     pages = {169-179},
     zbl = {0849.47030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv65i2p169bwm}
}
Bruck, Ronald; Kuczumow, Tadeusz; Reich, Simeon. Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property. Colloquium Mathematicae, Tome 66 (1993) pp. 169-179. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv65i2p169bwm/

[000] [1] J.-B. Baillon, Un théorème de type ergodique pour les contractions non linéaires dans un espace de Hilbert, C. R. Acad. Sci. Paris Sér. A 280 (1975), 1511-1514. | Zbl 0307.47006

[001] [2] J.-B. Baillon and R. E. Bruck, Ergodic theorems and the asymptotic behavior of contraction semigroups, preprint.

[002] [3] H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490. | Zbl 0526.46037

[003] [4] R. E. Bruck, On the almost-convergence of iterates of a nonexpansive mapping in Hilbert space and the structure of the weak ω-limit set, Israel J. Math. 29 (1978), 1-16. | Zbl 0367.47037

[004] [5] R. E. Bruck, Asymptotic behavior of nonexpansive mappings, in: Contemp. Math. 18, Amer. Math. Soc., 1983, 1-47. | Zbl 0528.47039

[005] [6] J. M. Dye, T. Kuczumow, P.-K. Lin and S. Reich, Random products of nonexpansive mappings in spaces with the Opial property, ibid. 144, 1993, to appear. | Zbl 0803.47052

[006] [7] M. Edelstein and R. C. O'Brien, Nonexpansive mappings, asymptotic regularity, and successive approximations, J. London Math. Soc. (2) 1 (1978), 547-554. | Zbl 0421.47031

[007] [8] K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174. | Zbl 0256.47045

[008] [9] K. Goebel and T. Kuczumow, Irregular convex sets with the fixed point property for nonexpansive mappings, Colloq. Math. 40 (1978), 259-264. | Zbl 0418.47031

[009] [10] J. Górnicki, Weak convergence theorems for asymptotically nonexpansive mappings in uniformly convex Banach spaces, Comment. Math. Univ. Carolinae 30 (1989), 249-252. | Zbl 0686.47045

[010] [11] J. Górnicki, Nonlinear ergodic theorems for asymptotically nonexpansive mappings in Banach spaces satisfying Opial's condition, J. Math. Anal. Appl. 161 (1991), 440-446. | Zbl 0756.47037

[011] [12] J. P. Gossez and E. Lami-Dozo, Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math. 40 (1972), 565-575. | Zbl 0223.47025

[012] [13] S. Ishikawa, Fixed points and iterations of nonexpansive mappings in Banach space, Proc. Amer. Math. Soc. 5 (1976), 65-71. | Zbl 0352.47024

[013] [14] W. A. Kirk, Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type, Israel J. Math. 17 (1974), 339-346. | Zbl 0286.47034

[014] [15] T. Kuczumow, Weak convergence theorems for nonexpansive mappings and semigroups in Banach spaces with Opial's property, Proc. Amer. Math. Soc. 93 (1985), 430-432. | Zbl 0585.47043

[015] [16] T. Kuczumow and S. Reich, Opial's property and James' quasi-reflexive spaces, preprint. | Zbl 0818.46019

[016] [17] C. Lennard, A new convexity property that implies a fixed point property for L1, Studia Math. 100 (1991), 95-108.

[017] [18] T. C. Lim, Asymptotic center and nonexpansive mappings in conjugate Banach spaces, Pacific J. Math. 90 (1980), 135-143. | Zbl 0454.47046

[018] [19] H. Oka, Nonlinear ergodic theorems for commutative semigroups of asymptotically nonexpansive mappings, Nonlinear Anal. 18 (1992), 619-635. | Zbl 0753.47044

[019] [20] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. | Zbl 0179.19902

[020] [21] S. Prus, Banach spaces with the uniform Opial property, Nonlinear Anal. 18 (1992), 697-704. | Zbl 0786.46023

[021] [22] S. Reich, Nonlinear evolution equations and nonlinear ergodic theorems, ibid. 1 (1976/77), 319-330. | Zbl 0359.34059

[022] [23] S. Reich, Almost convergence and nonlinear ergodic theorems, J. Approx. Theory 24 (1978), 269-272. | Zbl 0404.47032

[023] [24] S. Reich, A note on the mean ergodic theorem for nonlinear semigroups, J. Math. Anal. Appl. 91 (1983), 547-551. | Zbl 0521.47034

[024] [25] J. Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, ibid. 158 (1991), 407-413. | Zbl 0734.47036

[025] [26] K.-K. Tan and H.-K. Xu, A nonlinear ergodic theorem for asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 45 (1992), 25-36.

[026] [27] D. Tingley, An asymptotically nonexpansive commutative semigroup with no fixed points, Proc. Amer. Math. Soc. 97 (1986), 107-113. | Zbl 0592.47049

[027] [28] H.-K. Xu, Existence and convergence for fixed points of mappings of asymptotically nonexpansive type, Nonlinear Anal. 16 (1991), 1139-1146. | Zbl 0747.47041