Some properties of the Pisier-Zu interpolation spaces
Sersouri, A.
Colloquium Mathematicae, Tome 66 (1993), p. 43-50 / Harvested from The Polish Digital Mathematics Library

For a closed subset I of the interval [0,1] we let A(I) = [v1(I),C(I)](1/2)2. We show that A(I) is isometric to a 1-complemented subspace of A(0,1), and that the Szlenk index of A(I) is larger than the Cantor index of I. We also investigate, for ordinals η < ω1, the bases structures of A(η), A*(η), and A*(η) [the isometric predual of A(η)]. All the results of this paper extend, with obvious changes in the proofs, to the interpolation spaces [v1(I),C(I)]θq.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:210203
@article{bwmeta1.element.bwnjournal-article-cmv65i1p43bwm,
     author = {A. Sersouri},
     title = {Some properties of the Pisier-Zu interpolation spaces},
     journal = {Colloquium Mathematicae},
     volume = {66},
     year = {1993},
     pages = {43-50},
     zbl = {0819.46059},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv65i1p43bwm}
}
Sersouri, A. Some properties of the Pisier-Zu interpolation spaces. Colloquium Mathematicae, Tome 66 (1993) pp. 43-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv65i1p43bwm/

[000] [BL] J. Bergh and J. Löfström, Interpolation Spaces, Grundlehren Math. Wiss. 223, Springer, 1976. | Zbl 0344.46071

[001] [B] J. Bourgain, On convergent sequences of continuous functions, Bull. Soc. Math. Belgique 32 (1980), 235-249. | Zbl 0474.54008

[002] [E] G. A. Edgar, A long James space, in: Lecture Notes in Math. 794, Springer, 1980, 31-37.

[003] [JZ] K. John and V. Zizler, Smoothness and its equivalent in weakly compactly generated Banach spaces, J. Funct. Anal. 15 (1974), 1-15. | Zbl 0272.46012

[004] [P] G. Pisier, Sur les espaces de Banach qui ne contiennent pas uniformément de ln1, C. R. Acad. Sci. Paris 277 (1973), 991-994. | Zbl 0271.46011

[005] [PX] G. Pisier and Q. Xu, Random series in the real interpolation spaces between the spaces vp, preprint.

[006] [S] W. Szlenk, The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces, Studia Math. 30 (1968), 53-61. | Zbl 0169.15303

[007] [X] Q. Xu, Espaces d’interpolation réels entre les espaces vp: Propriétés géométriques et applications probabilistes, preprint. | Zbl 0718.46060