For a closed subset I of the interval [0,1] we let A(I) = [v1(I),C(I)](1/2)2. We show that A(I) is isometric to a 1-complemented subspace of A(0,1), and that the Szlenk index of A(I) is larger than the Cantor index of I. We also investigate, for ordinals η < ω1, the bases structures of A(η), A*(η), and [the isometric predual of A(η)]. All the results of this paper extend, with obvious changes in the proofs, to the interpolation spaces .
@article{bwmeta1.element.bwnjournal-article-cmv65i1p43bwm, author = {A. Sersouri}, title = {Some properties of the Pisier-Zu interpolation spaces}, journal = {Colloquium Mathematicae}, volume = {66}, year = {1993}, pages = {43-50}, zbl = {0819.46059}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv65i1p43bwm} }
Sersouri, A. Some properties of the Pisier-Zu interpolation spaces. Colloquium Mathematicae, Tome 66 (1993) pp. 43-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv65i1p43bwm/
[000] [BL] J. Bergh and J. Löfström, Interpolation Spaces, Grundlehren Math. Wiss. 223, Springer, 1976. | Zbl 0344.46071
[001] [B] J. Bourgain, On convergent sequences of continuous functions, Bull. Soc. Math. Belgique 32 (1980), 235-249. | Zbl 0474.54008
[002] [E] G. A. Edgar, A long James space, in: Lecture Notes in Math. 794, Springer, 1980, 31-37.
[003] [JZ] K. John and V. Zizler, Smoothness and its equivalent in weakly compactly generated Banach spaces, J. Funct. Anal. 15 (1974), 1-15. | Zbl 0272.46012
[004] [P] G. Pisier, Sur les espaces de Banach qui ne contiennent pas uniformément de , C. R. Acad. Sci. Paris 277 (1973), 991-994. | Zbl 0271.46011
[005] [PX] G. Pisier and Q. Xu, Random series in the real interpolation spaces between the spaces , preprint.
[006] [S] W. Szlenk, The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces, Studia Math. 30 (1968), 53-61. | Zbl 0169.15303
[007] [X] Q. Xu, Espaces d’interpolation réels entre les espaces : Propriétés géométriques et applications probabilistes, preprint. | Zbl 0718.46060