On Sasakian manifolds, Matsumoto and Chūman [3] defined a contact Bochner curvature tensor (see also Yano [7]) which is invariant under D-homothetic deformations (for D-homothetic deformations, see Tanno [5]). On the other hand, Tricerri and Vanhecke [6] defined a general Bochner curvature tensor with conformal invariance on almost Hermitian manifolds. In this paper we define an extended contact Bochner curvature tensor which is invariant under D-homothetic deformations of contact metric manifolds; we call it the EK-contact Bochner curvature tensor. We show that a contact metric manifold with vanishing EK-contact Bochner curvature tensor is a Sasakian manifold.
@article{bwmeta1.element.bwnjournal-article-cmv65i1p33bwm, author = {Hiroshi Endo}, title = {On an extended contact Bochner curvature tensor on contact metric manifolds}, journal = {Colloquium Mathematicae}, volume = {66}, year = {1993}, pages = {33-41}, zbl = {0820.53041}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv65i1p33bwm} }
Endo, Hiroshi. On an extended contact Bochner curvature tensor on contact metric manifolds. Colloquium Mathematicae, Tome 66 (1993) pp. 33-41. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv65i1p33bwm/
[000] [1] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer, Berlin 1976. | Zbl 0319.53026
[001] [2] D. E. Blair, Critical associated metrics on contact manifolds, J. Austral. Math. Soc. 37 (1984), 82-88. | Zbl 0552.53014
[002] [3] M. Matsumoto and G. Chūman, On the C-Bochner tensor, TRU Math. 5 (1969), 21-31.
[003] [4] Z. Olszak, On contact metric manifolds, Tôhoku Math. J. 31 (1979), 247-253.
[004] [5] S. Tanno, The topology of contact Riemannian manifolds, Illinois J. Math. 12 (1968), 700-712. | Zbl 0165.24703
[005] [6] F. Tricerri and L. Vanhecke, Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc. 267 (1981), 365-398. | Zbl 0484.53014
[006] [7] K. Yano, Anti-invariant submanifolds of a Sasakian manifold with vanishing contact Bochner curvature tensor, J. Differential Geom. 12 (1977), 153-170. | Zbl 0362.53046
[007] [8] K. Yano and M. Kon, Structures on Manifolds, World Sci., Singapore 1984.