The space of Whitney levels is homeomorphic to l2
Illanes, Alejandro
Colloquium Mathematicae, Tome 66 (1993), p. 1-11 / Harvested from The Polish Digital Mathematics Library
Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:210200
@article{bwmeta1.element.bwnjournal-article-cmv65i1p1bwm,
     author = {Alejandro Illanes},
     title = {The space of Whitney levels is homeomorphic to $l\_2$
            },
     journal = {Colloquium Mathematicae},
     volume = {66},
     year = {1993},
     pages = {1-11},
     zbl = {0819.54016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv65i1p1bwm}
}
Illanes, Alejandro. The space of Whitney levels is homeomorphic to $l_2$
            . Colloquium Mathematicae, Tome 66 (1993) pp. 1-11. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv65i1p1bwm/

[000] [1] W. J. Charatonik, A metric on hyperspaces defined by Whitney maps, Proc. Amer. Math. Soc. 94 (1985), 535-538. | Zbl 0567.54007

[001] [2] D. W. Curtis, Application of a selection theorem to hyperspace contractibility, Canad. J. Math. 37 (1985), 747-759. | Zbl 0563.54008

[002] [3] J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353-367. | Zbl 0043.38105

[003] [4] J. Dugundji, Topology, Allyn and Bacon, 1966.

[004] [5] C. Eberhart and S. B. Nadler, The dimension of certain hyperspaces, Bull. Acad. Polon. Sci. 19 (1971), 1027-1034. | Zbl 0235.54037

[005] [6] A. Illanes, Spaces of Whitney maps, Pacific J. Math. 139 (1989), 67-77. | Zbl 0674.54012

[006] [7] A. Illanes, The space of Whitney levels, Topology Appl. 40 (1991), 157-169. | Zbl 0761.54010

[007] [8] A. Illanes, The space of Whitney decompositions, Ann. Inst. Mat. Univ. Autónoma México 28 (1988), 47-61. | Zbl 0718.54025

[008] [9] S. B. Nadler, Hyperspaces of Sets, Dekker, 1978. | Zbl 0432.54007

[009] [10] H. Toruńczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981), 247-262. | Zbl 0468.57015

[010] [11] L. E. Ward, Jr., Extending Whitney maps, Pacific J. Math. 93 (1981), 465-469. | Zbl 0457.54008

[011] [12] S. Willard, General Topology, Addison-Wesley, 1970.